GM: Create a Gauss-Markov (GM) Process

View source: R/ts.model.R

GMR Documentation

Create a Gauss-Markov (GM) Process

Description

Setups the necessary backend for the GM process.

Usage

GM(beta = NULL, sigma2_gm = 1)

Arguments

beta

A double value for the \beta of an GM process.

sigma2_gm

A double value for the variance, \sigma ^2_{gm}, of a WN process.

Details

When supplying values for \beta and \sigma ^2_{gm}, these parameters should be of a GM process and NOT of an AR1. That is, do not supply AR1 parameters such as \phi, \sigma^2.

Internally, GM parameters are converted to AR1 using the 'freq' supplied when creating data objects (imu, gts) or specifying a 'freq' parameter in gmwm or gmwm.imu.

The 'freq' of a data object takes precedence over the 'freq' set when modeling.

Value

An S3 object with called ts.model with the following structure:

process.desc

Used in summary: "BETA","SIGMA2"

theta

\beta, \sigma ^2_{gm}

plength

Number of Parameters

desc

"GM"

obj.desc

Depth of Parameters e.g. list(1,1)

starting

Guess Starting values? TRUE or FALSE (e.g. specified value)

Author(s)

JJB

Examples

GM()
GM(beta=.32, sigma2_gm=1.3)

SMAC-Group/gmwm documentation built on June 10, 2025, 6:10 a.m.