| simulate_data | R Documentation |
simulate_data simulates data according to the data-generating process
defined by the model.
simulate_data(
n_users = 200,
n_domains = 500,
n_groups = 2,
group_prob = c(0.4, 0.6),
user_variance = FALSE,
params = list(alpha_mu = 2, alpha_sigma = 0.5, gamma_sigma = 0.75, theta_mu = c(-0.75,
0.5), theta_sigma = c(0.25, 0.25), omega_user_shape = 5, omega_user_rate = 5,
omega_domain_shape = 5, omega_domain_rate = 5)
)
n_users |
int, number of users in the data |
n_domains |
int, number of domains that users can share |
n_groups |
int, number of groups users can belong to |
group_prob |
numeric vector of length |
user_variance |
logical, whether to fit the model with an additional variance parameter per user (i.e. omega_user) |
params |
list containing complete (or partial) list of parameter values of the model. See Details section for more information. |
Returns a list with elements:
'Y': A matrix (n_users x n_domains) of simulated counts of
times each user shared a domain
'group': Vector of length n_users indicating group
membership of each user
'anchors': Index position (column in 'shares_data')
with the most extreme domains (minimum, maximum on latent scale)
'parameters': Simulated parameters:
'alpha': Numeric vector of length n_users,
user-level intercepts
'gamma': Numeric vector of length n_domains,
domain-level intercepts
'theta': Numeric vector of length n_users,
ideology of each user
'zeta': Numeric vector of length n_domains,
ideology of each domain
'omega_domain': Numeric vector of length n_domains,
variance parameter for domain
'omega_user': Numeric vector of length n_users,
variance parameter for each user
The data-generating process is defined as the following:
NegBin(\pi_{img}, \omega_i\omega_m)
\pi_{img} = \alpha_i + \gamma_m - ||\vartheta_i - \zeta_m||^2,
where \alpha_i denotes a user-level intercept; \gamma_m, a news
media domain intercept; \vartheta_i the sharing-ideology of user
i; zeta_m the ideology of news media domain m; and
\omega_i and \omega_m, user- and domain-level variance parameters.
Further details regarding can be found in the library's vignette.
simulated_data <- simulate_data()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.