library(ptse)
library(testthat)
context("unit tests")
test_that("Argument Type Checks ", {
dataMat <- cbind(runif(100,0,1),runif(100,0,1))
formula <- "Y ~ W1 + W2 | W3"
treatment <- "treat"
posttreat <- "pt"
typeSieve <- "spline"
numOrder <- 1
numKnots <- 1
dumAllAdditive <- FALSE
additiveSpline <- FALSE
nGrids <- 30
nGridsFine <- 1000
plotBeg <- 0.25
plotEnd <- 0.75
plotBy <- 0.05
link <- "logit"
optMute <- TRUE
Ytype <- "Yb"
dDim <- 2
discY <- FALSE
clusterInference <- FALSE
expect_error(meanEstimate(df=dataMat,dDim=dDim,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY),
"Argument df must be a data.frame. \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,clusterInference = clusterInference,discY=discY,alpha=0.05),
"Argument df must be a data.frame. \n",fixed=TRUE)
dataMat <- data.frame(Y = runif(100,0,1))
treatment <- 1
expect_error(meanEstimate(df=dataMat,dDim=dDim,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY),
"Argument treatment must be a single string \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),
"Argument treatment must be a single string \n",fixed=TRUE)
treatment <- "treat"
dDim <- "dummy"
expect_error(meanEstimate(df=dataMat,dDim=dDim,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY),
"Argument dDim must be an integer. \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),
"Argument dDim must be an integer. \n",fixed=TRUE)
dDim <- 2
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha="boo"),"Argument alpha must be a double \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting="",treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"Argument meanReporting must be a list, generated from meanEstimates",fixed=TRUE)
})
test_that("Argument Value Checks ", {
dataMat <- data.frame(Y = runif(100,0,1))
dDim <- 2
formula <- "Y ~ W1 + W2 | W3"
treatment <- "treat"
posttreat <- "pt"
typeSieve <- "spline"
numOrder <- 0
numKnots <- 1
dumAllAdditive <- FALSE
additiveSpline <- FALSE
nGrids <- 30
nGridsFine <- 1000
plotBeg <- 0.25
plotEnd <- 0.75
plotBy <- 0.05
link <- "logit"
optMute <- TRUE
Ytype <- "Yb"
discY <- FALSE
clusterInference <- FALSE
expect_error(meanEstimate(df=dataMat,dDim=dDim,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY),"numOrder must be positive",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"numOrder must be positive",fixed=TRUE)
numOrder <- 1
nGridsFine <- -1
expect_error(meanEstimate(df=dataMat,dDim=dDim,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY),"nGridsFine must be positive",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"nGridsFine must be positive",fixed=TRUE)
nGridsFine <- 1000
plotBeg <- -1
expect_error(meanEstimate(df=dataMat,dDim=dDim,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY),"plotBeg must be in (0,1) \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"plotBeg must be in (0,1) \n",fixed=TRUE)
plotEnd <- 1
plotBeg <- 0.25
expect_error(meanEstimate(df=dataMat,dDim=dDim,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY),"plotEnd must be in (0,1) \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"plotEnd must be in (0,1) \n",fixed=TRUE)
plotEnd <- 0.25
plotBeg <- 0.75
expect_error(meanEstimate(df=dataMat,dDim=dDim,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY),"plotBeg must be strictly less than plotEnd \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"plotBeg must be strictly less than plotEnd \n",fixed=TRUE)
plotEnd <- 0.75
plotBeg <- 0.25
plotBy <- 0.9
expect_error(meanEstimate(df=dataMat,dDim=dDim,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY),"plotBy must be positive and less than the range of plots \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"plotBy must be positive and less than the range of plots \n",fixed=TRUE)
plotBy <- 0.05
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=1.2),"alpha must be in (0,1) \n",fixed=TRUE)
posttreat <- "DVar"
treatment <- "T"
expect_error(meanEstimate(df=dataMat,dDim=dDim,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,disc=discY),"variable specified for posttreat does not exist \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"variable specified for posttreat does not exist \n",fixed=TRUE)
dataMat <- data.frame(Y = runif(100,0,1), DVar = (runif(100,0,1) > 0.5) + (runif(100,0,1) > 0.5))
expect_error(meanEstimate(df=dataMat,dDim=dDim,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,disc=discY),"variable specified for treatment does not exist \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"variable specified for treatment does not exist \n",fixed=TRUE)
dataMat <- data.frame(boo = runif(100,0,1), DVar = (runif(100,0,1) > 0.5) + (runif(100,0,1) > 0.5), T = (runif(100,0,1) > 0.5) )
expect_error(meanEstimate(df=dataMat,dDim=3,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,disc=discY),"variable specified for outcome measure does not exist",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=3,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"variable specified for outcome measure does not exist",fixed=TRUE)
dataMat <- data.frame(Y = runif(100,0,1), DVar = (runif(100,0,1) > 0.5) + (runif(100,0,1) > 0.5), T = (runif(100,0,1) > 0.5) )
expect_error(meanEstimate(df=dataMat,dDim=3,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,disc=discY),"variable Yb does not exist in the data.frame",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=3,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"variable Yb does not exist in the data.frame",fixed=TRUE)
dataMat <- data.frame(Y = runif(100,0,1), DVar = (runif(100,0,1) > 0.5) + (runif(100,0,1) > 0.5), T = (runif(100,0,1) > 0.5), Yb = runif(100,0,1) )
expect_error(meanEstimate(df=dataMat,dDim=dDim,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,disc=discY),"Number of levels of posttreat does not match with dDim \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=dDim,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"Number of levels of posttreat does not match with dDim \n",fixed=TRUE)
dataMat <- data.frame(Y = runif(100,0,1), DVar = (runif(100,0,1) > 0.5) + 3*(runif(100,0,1) > 0.5), T = (runif(100,0,1) > 0.5), Yb = runif(100,0,1) )
expect_error(meanEstimate(df=dataMat,dDim=4,treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,disc=discY),"posttreat: Failure in conversion of factor levels, specify postreat as factor of levels 1,2,...,dDim \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=4,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"posttreat: Failure in conversion of factor levels, specify postreat as factor of levels 1,2,...,dDim \n",fixed=TRUE)
clusterInference <- TRUE
expect_error(bootstrapProc(df=dataMat,dDim=4,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"posttreat: Failure in conversion of factor levels, specify postreat as factor of levels 1,2,...,dDim \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=4,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,cluster = "cluster",alpha=0.05),"posttreat: Failure in conversion of factor levels, specify postreat as factor of levels 1,2,...,dDim \n",fixed=TRUE)
dataMat <- data.frame(Y = runif(100,0,1), DVar = (runif(100,0,1) > 0.5) + 3*(runif(100,0,1) > 0.5), T = (runif(100,0,1) > 0.5), Yb = runif(100,0,1), cluster = factor(round(runif(100,0,1)*30)) )
clusterInference <- TRUE
typeSieve <- "Wavelets"
expect_error(bootstrapProc(df=dataMat,dDim=4,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,alpha=0.05),"posttreat: Failure in conversion of factor levels, specify postreat as factor of levels 1,2,...,dDim \n",fixed=TRUE)
expect_error(bootstrapProc(df=dataMat,dDim=4,meanReporting=list(1,2),treatment=treatment,posttreat=posttreat,typeSieve =typeSieve,formula=formula,
numOrder=numOrder,numKnots=numKnots,dumAllAdditive = dumAllAdditive,
additiveSpline = additiveSpline,nGrids = nGrids,nGridsFine = nGridsFine,
plotBeg = plotBeg,plotEnd = plotEnd,plotBy=plotBy,link=link,optMute =optMute,Ytype=Ytype,discY=discY,clusterInference = clusterInference,cluster = "cluster",alpha=0.05),"posttreat: Failure in conversion of factor levels, specify postreat as factor of levels 1,2,...,dDim \n",fixed=TRUE)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.