#' Constructing robust reference standards for Nof1 studies for precision medicine
#'
#' \code{referenceNof1} is the R implementation of the reference biomarker algorithm by (Zaim 2020)
#'
#' @noRd
.DEG_DESeq2 <- function(countTable,conditions){
## Identify DEG w/ DEGSeq2
##
## Args:
## countTable: a count matrix of the RNASeq data
## condtions: the experiment conditions of the two samples
##
## Returns:
## A data.frame of statistics regarding differential expression.
## Each row corresponds to a gene.
## produce colData required by DESeq2,
## and make the format conform with what DESeq2 requires
colDataTmp <- data.frame(condition = conditions)
row.names(colDataTmp) <- conditions
## convert count data matrix to the formated that DESeq operates on
dds <- DESeq2::DESeqDataSetFromMatrix(countData = countTable,
colData =colDataTmp,
design = ~condition)
## conduct DESeq2
dds <- DESeq2::DESeq(dds)
res <- DESeq2::results(dds)
return(res)
}
.DEG_DESeq2.cb <- function(countTable,conditions){
## Identify DEG w/ DEGSeq2
##
## Args:
## countTable: a count matrix of the RNASeq data
## condtions: the experiment conditions of the two samples
##
## Returns:
## A data.frame of statistics regarding differential expression.
## Each row corresponds to a gene.
## produce colData required by DESeq2,
## and make the format conform with what DESeq2 requires
colDataTmp <- data.frame(condition = conditions)
#row.names(colDataTmp) <- conditions
## convert count data matrix to the formated that DESeq operates on
dds <- DESeq2::DESeqDataSetFromMatrix(countData = countTable,
colData =colDataTmp,
design = ~condition)
## conduct DESeq2
dds <- DESeq2::DESeq(dds)
res <- DESeq2::results(dds)
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.