## calRPC.R Calibration of monthly/seasonal forecasts
##
## Copyright (C) 2018 Santander Meteorology Group (http://www.meteo.unican.es)
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
#' @title Calibration using the Ratio of Predictable Components for seasonal climate forecasts.
#' @description This function implements the EMOS method described in Eade et. 2014.
#' It uses the ensemble to reduce noise and adjust the forecast variance so that the ratio of predictable components (RPC) in the model and in the observations is the same.
#' In Eade et al. 2014, this method was used to adjust seasonal forecasts of the North Atlantic Oscillation (NAO), temperature and pressure in the North Atlantic region.
#' @note Ensemble Model Output Statistics (EMOS) methods use the correspondence between the ensemble mean and the observations in the calibration process.
#' @param fcst.grid climate4R grid. Forecasts to be calibrated (typically on a monthly/seasonal basis). At the moment, only gridded data are supported.
#' @param obs.grid climate4R grid. Reference observations the forecasts are calibrated towards (typically on a monthly/seasonal basis).
#' @param crossval Logical. TRUE (default) for leave-one-out-out cross-validation. FALSE for not cross-validation.
#' @param apply.to Character. If \code{"all"} is selected, all forecasts are calibrated. Alternatively, if \code{"sig"} is selected, the calibration is only applied
#' in those points where the correlation between the ensemble mean and the observations is statistically significant.
#' @param alpha Significance (0.1 by default) of the ensemble mean correlation (i.e. \code{"alpha = 0.05"} would correspond to a 95\% confidence level). Only works if \code{"apply.to = sig"}.
#' @return climate4R grid. Calibrated forecasts.
#' @importFrom transformeR getShape
#' @importFrom stats cor.test sd var
#' @export
#' @references
#' \itemize{
#' \item Eade R., D. Smith, A. Scaife, et al, 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett., 41(15):5620-5628, doi:10.1002/2014GL061146
#' }
#' @author R. Manzanas.
#' @family calibration
#' @examples{
#' ## loading seasonal forecasts (CFS) and observations (NCEP) of boreal winter temperature over Iberia
#' require(climate4R.datasets)
#' data("CFS_Iberia_tas"); fcst = CFS_Iberia_tas
#' data("NCEP_Iberia_tas"); obs = NCEP_Iberia_tas
#' ## passing from daily data to seasonal averages
#' fcst = aggregateGrid(fcst, aggr.y = list(FUN = "mean", na.rm = TRUE))
#' obs = aggregateGrid(obs, aggr.y = list(FUN = "mean", na.rm = TRUE))
#' ## interpolating forecasts to the observations' resolution
#' fcst = interpGrid(fcst, new.coordinates = getGrid(obs))
#' ## applying calibration
#' fcst.cal = calRPC(fcst, obs, crossval = TRUE, apply.to = "all")
#' ## plotting climatologies
#' library(visualizeR)
#' spatialPlot(makeMultiGrid(climatology(obs),
#' climatology(fcst, by.member = FALSE),
#' climatology(fcst.cal, by.member = FALSE)),
#' backdrop.theme = "coastline",
#' layout = c(3, 1),
#' names.attr = c("NCEP", "CFS (raw)", "CFS (calibrated)"))
#' }
calRPC <- function(fcst.grid, obs.grid, crossval = TRUE, apply.to = c("all", "sig"), alpha = 0.1) {
# Eade et al. 2014: http://onlinelibrary.wiley.com/doi/10.1002/2014GL061146/abstract
apply.to = match.arg(apply.to, choices = c("all","sig"))
fcst = fcst.grid$Data
obs = obs.grid$Data
stopifnot(identical(dim(fcst)[-1], dim(obs))) # check for equality of dimensions between fcst and obs
nmemb = getShape(fcst.grid, "member")
ntimes = getShape(fcst.grid, "time")
nlat = getShape(fcst.grid, "lat")
nlon = getShape(fcst.grid, "lon")
fcst.cal = NA*fcst
for (ilat in 1:nlat) {
if (!(ilat/10) - trunc(ilat/10)) {
message(sprintf("... lat %d of %d ...", ilat, nlat))
}
for (ilon in 1:nlon) {
tryCatch({
if (crossval) {
## leave-one-out cross-validation
aux = sapply(1:ntimes, function(x) {
fcst.train = fcst[,-x,ilat,ilon]
fcst.test = fcst[,x,ilat,ilon]
obs.train = obs[-x,ilat,ilon]
clim.obs = mean(obs.train, na.rm = T)
obs.train = obs.train - clim.obs
clim.fcst = mean(fcst.train, na.rm = T)
fcst.train = fcst.train - clim.fcst
fcst.test = fcst.test - clim.fcst
ens.mean = colMeans(fcst.train, na.rm = T)
sigma.em = sd(ens.mean, na.rm = T)
sigma.ref = sd(obs.train, na.rm = T)
rho = cor.test(obs.train, ens.mean, method = "pearson", alternative = "greater")
if (apply.to == "sig") {
if (rho$p.value < alpha) { # statistically significant (alpha*100(%)) correlation
adj.em.test = ((mean(fcst.test, na.rm = T) - mean(ens.mean, na.rm = T))*(sigma.ref*rho$estimate/sigma.em)) + mean(ens.mean, na.rm = T)
sigma.noi = sqrt(var(fcst.test - mean(fcst.test, na.rm = T), na.rm = T))
((fcst.test - mean(fcst.test, na.rm = T))*((sigma.ref*sqrt(1-(rho$estimate^2))) / (sigma.noi))) + adj.em.test + clim.obs
} else {
fcst.test + clim.fcst
}
} else if (apply.to == "all") {
adj.em.test = ((mean(fcst.test, na.rm = T) - mean(ens.mean, na.rm = T))*(sigma.ref*rho$estimate/sigma.em)) + mean(ens.mean, na.rm = T)
sigma.noi = sqrt(var(fcst.test - mean(fcst.test, na.rm = T), na.rm = T))
((fcst.test - mean(fcst.test, na.rm = T))*((sigma.ref*sqrt(1-(rho$estimate^2))) / (sigma.noi))) + adj.em.test + clim.obs
}
})
fcst.cal[,,ilat,ilon] = aux; rm(aux)
} else {
fcst.train = fcst[,,ilat,ilon]
fcst.test = fcst.train
obs.train = obs[,ilat,ilon]
clim.obs = mean(obs.train, na.rm = T)
obs.train = obs.train - clim.obs
clim.fcst = mean(fcst.train, na.rm = T)
fcst.train = fcst.train - clim.fcst
fcst.test = fcst.test - clim.fcst
ens.mean = colMeans(fcst.train, na.rm = T)
sigma.em = sd(ens.mean, na.rm = T)
sigma.ref = sd(obs.train, na.rm = T)
rho = cor.test(obs.train, ens.mean, method = "pearson", alternative = "greater")
if (apply.to == "sig") {
if (rho$p.value < alpha) { # statistically significant (alpha*100(%)) correlation
adj.em.test = ((colMeans(fcst.test, na.rm = T) - mean(ens.mean, na.rm = T))*(sigma.ref*rho$estimate/sigma.em)) + mean(ens.mean, na.rm = T)
sigma.noi = sqrt(apply(fcst.test - matrix(colMeans(fcst.test, na.rm = T), nrow = nmemb, ncol = ntimes, byrow = T), 2, "var", na.rm = T))
fcst.cal[,,ilat,ilon] = ((fcst.test - matrix(colMeans(fcst.test, na.rm = T), nrow = nmemb, ncol = ntimes, byrow = T))*((sigma.ref*sqrt(1-(rho$estimate^2))) / (sigma.noi))) + adj.em.test + clim.obs
} else {
fcst.cal[,,ilat,ilon] = fcst.test + clim.fcst
}
} else if (apply.to == "all") {
adj.em.test = ((colMeans(fcst.test, na.rm = T) - mean(ens.mean, na.rm = T))*(sigma.ref*rho$estimate/sigma.em)) + mean(ens.mean, na.rm = T)
sigma.noi = sqrt(apply(fcst.test - matrix(colMeans(fcst.test, na.rm = T), nrow = nmemb, ncol = ntimes, byrow = T), 2, "var", na.rm = T))
fcst.cal[,,ilat,ilon] = ((fcst.test - matrix(colMeans(fcst.test, na.rm = T), nrow = nmemb, ncol = ntimes, byrow = T))*((sigma.ref*sqrt(1-(rho$estimate^2))) / (sigma.noi))) + adj.em.test + clim.obs
}
}
}, error = function(x) {
# NA data
})
}
}
fcst.out = fcst.grid
fcst.out$Data = fcst.cal
attributes(fcst.out$Data)$dimensions = attributes(fcst.grid$Data)$dimensions
return(fcst.out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.