adaplassostd_lambda: Fits adaptive adaplasso based on standardized data

Description Usage Arguments Value Examples

View source: R/FunctionsALasso.R

Description

Fits adaptive adaplasso based on standardized data

Usage

1
adaplassostd_lambda(Xstd, Ystd, lambda, beta_init = NULL, eps = 0.001)

Arguments

Xstd

n x p design matrix X scaled according to LARS algorithm and centered to mean 0

Ystd

n x 1 centered output vector

lambda

tuning parameter(scalar)

beta_init

p x 1, optional starting point for coordinate descent algorithm

eps

precision level for convergence assessment, default 0.001

Value

beta

vector of parameters

obj_min

optimal value of the objective function

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
X <- matrix(rnorm(500), 50, 10)
Y <- rnorm(50)
gamma <- 2
#Standardizing X and Y
std <- standardize(X , Y , gamma)
#Deriving weighted and centered design matrix
Xstd <- std$Xstd
#Deriving centered Y
Ystd <- std$Ystd
# tuning parameter
lambda  <- 0.1
fit <- adaplassostd_lambda(Xstd, Ystd, lambda)

Saptati-Datta/AdapLasso documentation built on Dec. 18, 2021, 12:57 p.m.