dist_wpd: Title Compute distances based on wpd Computes distances...

Description Usage Arguments Value Examples

View source: R/dist_wpd.R

Description

Title Compute distances based on wpd Computes distances between subjects based on wpd across different granularities

Usage

1
dist_wpd(.data, harmony_tbl = NULL, response = NULL, nperm = 100)

Arguments

.data

a tsibble

harmony_tbl

a harmony table

response

measured variable

nperm

number of permutations for normalization

Value

returns an object of class "dist"

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
library(gravitas)
library(tidyverse)
library(parallel)
library(tsibble)
library(rlang)
sm <- smart_meter10 %>%
  filter(customer_id %in% c("10006704", "10017936", "10006414", "10018250"))
gran1 <- "hour_day"
gran2 <- NULL
harmonies <- sm %>%
  harmony(
    ugran = "year",
    filter_in = "wknd_wday",
    filter_out = c("hhour", "fortnight", "quarter", "semester")
  )
harmonies1 <- harmonies %>% mutate(facet_variable = NA)

h <- harmonies1 %>%
  select(-facet_levels) %>%
  distinct() %>%
  mutate(facet_levels = NA) %>%
  filter(x_variable %in% c("month_year", "hour_day", "wknd_wday"))

v <- dist_wpd(sm, harmony_tbl = h)
v

Sayani07/gracsr documentation built on Dec. 18, 2021, 12:59 p.m.