#' Title Compute scalar normalised pairwise distances
#'
#' @param .data data for which mmpd needs to be calculated
#' @param gran_x granularities mapped across x levels
#' @param gran_facet granularities mapped across facetss
#' @param response univarite response variable
#' @param quantile_prob probabilities
#' @param dist_ordered if categories are ordered
#' @param lambda value of tuning parameter for computing weighted pairwise distances
#' @return the weighted pairwise distance normalised through modeling raw distances as a function of total number of categories
#'
#' @examples
#' library(dplyr)
#' library(parallel)
#' sm <- smart_meter10 %>%
#' dplyr::filter(customer_id %in% c("10017936"))
#' gran_x <- "day_week"
#' gran_facet <- "month_year"
#' v <- compute_pairwise_norm_scalar(sm, gran_x, gran_facet,
#' response = general_supply_kwh, lambda = 0.67
#' )
#' # month of the year not working in this setup
#' @export compute_pairwise_norm_scalar
compute_pairwise_norm_scalar <- function(.data,
gran_x = NULL,
gran_facet = NULL,
response = NULL,
quantile_prob =
seq(0.01, 0.99, 0.01),
dist_ordered = TRUE,
lambda = 0.67) {
dist_data <- compute_pairwise_dist(
.data,
gran_x,
gran_facet,
{{ response }},
quantile_prob,
dist_ordered,
lambda
)
raw <- max(dist_data$trans_value, na.rm = TRUE)
# fitting a log-linear model and normalising for the number of distances
# (raw - 0.0027 * log(nrow(dist_data))) %>% round(digits = 3)
# for two granularities
if (!is.na(gran_facet)) {
(raw - 1 / (23.4 - 0.96 * log(nrow(dist_data)))) * 320 %>%
round(digits = 3)
}
# for one granularity
else {
(raw - 1 / (26.09 - 1.87 * log(nrow(dist_data)))) * 260 %>%
round(digits = 3)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.