plot_mean_roc | R Documentation |
Plot ROC and PRC curves
plot_mean_roc(dat, ribbon_fill = "#C6DBEF", line_color = "#08306B") plot_mean_prc( dat, baseline_precision = NULL, ribbon_fill = "#C7E9C0", line_color = "#00441B" )
dat |
sensitivity, specificity, and precision data calculated by |
ribbon_fill |
ribbon fill color (default: "#D9D9D9") |
line_color |
line color (default: "#000000") |
baseline_precision |
baseline precision from |
plot_mean_roc()
: Plot mean sensitivity over specificity
plot_mean_prc()
: Plot mean precision over recall
Courtney Armour
Kelly Sovacool sovacool@umich.edu
## Not run: library(dplyr) # get performance for multiple models get_sensspec_seed <- function(seed) { ml_result <- run_ml(otu_mini_bin, "glmnet", seed = seed) sensspec <- calc_model_sensspec( ml_result$trained_model, ml_result$test_data, "dx" ) %>% mutate(seed = seed) return(sensspec) } sensspec_dat <- purrr::map_dfr(seq(100, 102), get_sensspec_seed) # plot ROC & PRC sensspec_dat %>% calc_mean_roc() %>% plot_mean_roc() baseline_prec <- calc_baseline_precision(otu_mini_bin, "dx", "cancer") sensspec_dat %>% calc_mean_prc() %>% plot_mean_prc(baseline_precision = baseline_prec) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.