calc_model_sensspec | R Documentation |
Use these functions to calculate cumulative sensitivity, specificity, recall, etc. on single models, concatenate the results together from multiple models, and compute mean ROC and PRC. You can then plot mean ROC and PRC curves to visualize the results. Note: These functions assume a binary outcome.
calc_model_sensspec(trained_model, test_data, outcome_colname = NULL) calc_mean_roc(sensspec_dat) calc_mean_prc(sensspec_dat)
trained_model |
Trained model from |
test_data |
Held out test data: dataframe of outcome and features. |
outcome_colname |
Column name as a string of the outcome variable
(default |
sensspec_dat |
data frame created by concatenating results of
|
data frame with summarized performance
calc_model_sensspec()
: Get sensitivity, specificity, and precision for a model.
calc_mean_roc()
: Calculate mean sensitivity over specificity for multiple models
calc_mean_prc()
: Calculate mean precision over recall for multiple models
Courtney Armour
Kelly Sovacool, sovacool@umich.edu
## Not run: library(dplyr) # get cumulative performance for a single model sensspec_1 <- calc_model_sensspec( otu_mini_bin_results_glmnet$trained_model, otu_mini_bin_results_glmnet$test_data, "dx" ) head(sensspec_1) # get performance for multiple models get_sensspec_seed <- function(seed) { ml_result <- run_ml(otu_mini_bin, "glmnet", seed = seed) sensspec <- calc_model_sensspec( ml_result$trained_model, ml_result$test_data, "dx" ) %>% mutate(seed = seed) return(sensspec) } sensspec_dat <- purrr::map_dfr(seq(100, 102), get_sensspec_seed) # calculate mean sensitivity over specificity roc_dat <- calc_mean_roc(sensspec_dat) head(roc_dat) # calculate mean precision over recall prc_dat <- calc_mean_prc(sensspec_dat) head(prc_dat) # plot ROC & PRC roc_dat %>% plot_mean_roc() baseline_prec <- calc_baseline_precision(otu_mini_bin, "dx", "cancer") prc_dat %>% plot_mean_prc(baseline_precision = baseline_prec) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.