clustering | R Documentation |
Hierarchical clustering of both samples and variables
clustering( x, dissym.c = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "1-cor", "1-abs(cor)")[7], correl.c = c("pearson", "kendall", "spearman")[1], agglo.c = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid")[2], clusters.vi = c(2, 2), cex.vn = c(1, 1), palette.c = c("blueOrangeRed", "redBlackGreen")[1], scale_plot.l = TRUE, title.c = NA, figure.c = c("none", "interactive", "myfile.pdf")[2], report.c = c("none", "interactive", "myfile.txt")[2] ) ## S4 method for signature 'MultiAssayExperiment' clustering( x, dissym.c = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "1-cor", "1-abs(cor)")[7], correl.c = c("pearson", "kendall", "spearman")[1], agglo.c = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid")[2], clusters.vi = c(2, 2), cex.vn = c(1, 1), palette.c = c("blueOrangeRed", "redBlackGreen")[1], scale_plot.l = TRUE, title.c = NA, figure.c = c("none", "interactive", "myfile.pdf")[2], report.c = c("none", "interactive", "myfile.txt")[2] ) ## S4 method for signature 'SummarizedExperiment' clustering( x, dissym.c = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "1-cor", "1-abs(cor)")[7], correl.c = c("pearson", "kendall", "spearman")[1], agglo.c = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid")[2], clusters.vi = c(2, 2), cex.vn = c(1, 1), palette.c = c("blueOrangeRed", "redBlackGreen")[1], scale_plot.l = TRUE, title.c = NA, figure.c = c("none", "interactive", "myfile.pdf")[2], report.c = c("none", "interactive", "myfile.txt")[2] ) ## S4 method for signature 'MultiDataSet' clustering( x, dissym.c = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "1-cor", "1-abs(cor)")[7], correl.c = c("pearson", "kendall", "spearman")[1], agglo.c = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid")[2], clusters.vi = c(2, 2), cex.vn = c(1, 1), palette.c = c("blueOrangeRed", "redBlackGreen")[1], scale_plot.l = TRUE, title.c = NA, figure.c = c("none", "interactive", "myfile.pdf")[2], report.c = c("none", "interactive", "myfile.txt")[2] ) ## S4 method for signature 'ExpressionSet' clustering( x, dissym.c = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "1-cor", "1-abs(cor)")[7], correl.c = c("pearson", "kendall", "spearman")[1], agglo.c = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid")[2], clusters.vi = c(2, 2), cex.vn = c(1, 1), palette.c = c("blueOrangeRed", "redBlackGreen")[1], scale_plot.l = TRUE, title.c = NA, figure.c = c("none", "interactive", "myfile.pdf")[2], report.c = c("none", "interactive", "myfile.txt")[2] )
x |
An S4 object of class |
dissym.c |
character: [hclust] |
correl.c |
character: correlation coefficient (in case '1-cor' or '1-abs(cor)' are selected as dissymilarity) |
agglo.c |
character: agglomeration method |
clusters.vi |
tupple of integers: number of sample and variable clusters, respectively |
cex.vn |
tupple of numerics [Plot parameter]; size of the sample and variable labels |
palette.c |
character [Plot parameter]: color palette |
scale_plot.l |
logical [Plot parameter]: scaling (mean-centering and unit variance scaling) to enhance contrast (for plotting only) |
title.c |
character [Plot parameter]: Graphic the subtitle |
figure.c |
character: File name with '.pdf' extension for the figure; if 'interactive' (default), figures will be displayed interactively; if 'none', no figure will be generated |
report.c |
character: File name with '.txt' extension for the printed results (call to sink()'); if 'interactive' (default), messages will be printed on the screen; if 'none', no verbose will be generated |
SummarizedExperiment
or MultiAssayExperiment
including columns indicating
the clusters in rowData and colData if 'clusters.vi' has been specified
sacurine.se <- reading(system.file("extdata/W4M00001_Sacurine-statistics", package = "phenomis")) sacurine.se <- correcting(sacurine.se) sacurine.se <- sacurine.se[, pData(sacurine.se)[, "sampleType"] != "pool"] sacurine.se <- transforming(sacurine.se) sacurine.se <- sacurine.se[, sampleNames(sacurine.se) != "HU_neg_096_b2"] sacurine.se <- clustering(sacurine.se) utils::head(fData(sacurine.se)) # MultiDataSet prometis.mset <- reading(system.file("extdata/prometis/", package="phenomis")) prometis.mset <- clustering(prometis.mset, clusters.vi = c(3, 3))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.