### 8.0 Extended Solow Growth Model for Endogeneous Growth #############################
SimulateExtendedSolowModelEndogenousGrowth <- function(paragrid, np, startvals){
# Roxygen Header ---------------------------------
#' @title Simulates the ESEG Solow variant
#' @description Simulates all (both primary and secondary) endogenous variables to the extended Solow growth model with endogenous technological growth.
#' @inheritParams SimulateBasicSolowModel
#' @note The structural equations to this model can be found in the vignette to this package:
#' \code{vignette("SolowVariants")}
#' @export
# Function ---------------------------------
# Initialize Simulation Table ---------------------------------
sim_table <- create_simulation_table(variable_encoder(getModelVars("ESEG")), np)
# Fill Start Values for Period 0 ---------------------------------
aux_index <- which(sim_table$period == 0)
sim_table[[aux_index, "L"]] <- startvals$L
sim_table[[aux_index, "K"]] <- startvals$K
sim_table[[aux_index, "Y"]] <- ESEG_MF_Y(
sim_table[["K"]][[which(sim_table$period == 0)]],
sim_table[["L"]][[which(sim_table$period == 0)]],
paragrid[["alpha"]][[which(paragrid$period == 0)]],
paragrid[["phi"]][[which(paragrid$period == 0)]],
sim_table[["L"]][[which(sim_table$period == 0)]]) # dirty workaround on last function input
# Computing Variables after Period 0 ---------------------------------
for (i in 1:np){
# i <- 1
# print(i)
aux_index <- which(sim_table$period == i)
sim_table[[aux_index, "L"]] <- ESEG_MF_LN(
paragrid[["n"]][[which(paragrid$period == i-1)]],
sim_table[["L"]][[which(sim_table$period == i-1)]])
sim_table[[aux_index, "K"]] <- ESEG_MF_KN(
paragrid[["s"]][[which(paragrid$period == i-1)]],
sim_table[["Y"]][[which(sim_table$period == i-1)]],
paragrid[["delta"]][[which(paragrid$period == i-1)]],
sim_table[["K"]][[which(sim_table$period == i-1)]])
sim_table[[aux_index, "Y"]] <- ESEG_MF_Y(
sim_table[["K"]][[aux_index]],
sim_table[["L"]][[aux_index]],
paragrid[["alpha"]][[aux_index]],
paragrid[["phi"]][[aux_index]],
sim_table[["L"]][[aux_index]]) # dirty workaround on last function input
# explanation on dirty workaround
# ESEG_MF_Y computes differently depending on phi (semi or fully endo growth)
# since TFP is computed as an additional variable (with add_var_computer) it is not available in the simulation part itself.
# in other words TFP is a secondary endo variable here.
# TFP is however used in the ESEG_MF_Y when phi is close to 1 (case of fully endo growth)
# yet TFP is not available!
# but since TFP is defined as a constant based on L (a constant, since no grwoth in L in fully endo growth setting which takes n as 0)
# ...., we can use L (which is 1) as essentially containing the value of TFP (which will be filled in later and is L^(1-alpha) and 1^k k in R is 1)
}
# Remark on n = 0 in case of fully endogenous growth (phi -> 1) ---------------------------------
if(any(unique(paragrid[["phi"]]) %>% between (0.95, 1))){
if(any(unique(paragrid[["n"]])!=0)){
message("Given the entered value for phi is close to 1, which approximates the fully endogenous ESEG, the parameter n should be set at 0.")
}
}
# Computing Additional Variables ---------------------------------
remaining_vars_to_compute_bool <- names(sim_table) %in% c("period", "L", "K", "Y")
sim_table <- add_var_computer(sim_table, remaining_vars_to_compute_bool, paragrid, "special", "ESEG")
# Remark on Stability Conditions ---------------------------------
phi <- paragrid[["phi"]][[dim(paragrid)[[1]]]]
s <- paragrid[["s"]][[dim(paragrid)[[1]]]]
A <- sim_table[["TFP"]][[dim(sim_table)[[1]]]]
n <- paragrid[["n"]][[dim(paragrid)[[1]]]]
delta <- paragrid[["delta"]][[dim(paragrid)[[1]]]]
if(phi < 0.95){
if(((1 + n)^(1/(1-phi))) > (1 - delta)){
message("Stability condition of the semi endogeneous ESEG (((1 + n)^(1/(1-phi))) > (1 - delta)) is fulfilled.")
}else{
message("Stability condition of the semi endogeneous ESEG (((1 + n)^(1/(1-phi))) > (1 - delta)) is NOT fulfilled.")
}
}else if(phi >= 0.95 && phi< 1){
if(s * A - delta > 0){
message("Stability condition of the fully endogeneous ESEG (s*A - delta > 0) is fulfilled.")
}else{
message("Stability condition of the fully endogeneous ESEG (s*A - delta > 0) is NOT fulfilled.")
}
}else if(phi > 1){
NaN
}
return(sim_table)
}
# Working for phi << 1 but not for phi ~ 1 (not sure why)
# # Testing
# phi <- 0.9999
# n <- 0
# delta <- 0.15
# s <- 0.2
#
#
# testnamel <- c("alpha", "phi", "delta", "n", "s")
# testivl <- c(1/3, phi, delta, n, s)
# testpfcl <- c(NA,NA,NA, NA, NA)
# testnvl <- c(NA, NA, NA, NA, NA)
# np <- 200
# testgridalt <- create_parameter_grid(testnamel, testivl, testpfcl, testnvl, np)
# paragrid <- testgridalt
# startvals <- list(K = 1, L = 1)
# testsimulation <- SimulateExtendedSolowModelEndogenousGrowth(testgridalt, np,startvals)
#
# source("HelperFunctions.R")
#
# (1 + n)^(1/(1- phi)) > 1- delta
# (testsimulation[["TFP"]][[201]] - testsimulation[["TFP"]][[200]])/testsimulation[["TFP"]][[200]]
# ESEG_SS_gYpW(n, phi, s, testsimulation[["TFP"]][[201]], delta)
#
# steadystate_checker(testsimulation[nrow(testsimulation), ],
# paragrid[nrow(paragrid), ],
# "ESEG")
# VisualiseSimulation(testsimulation, variable_encoder("Capital Stock per Worker"), "free")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.