pmle: PMLE-penalized maximum likelihood estimate in linear...

Description Usage Arguments Value Examples

Description

A penalized maximum likelihood estimator using R

Usage

1
pmle(x, y, lam0 = NULL, LSE = FALSE)

Arguments

x

predictors, an n by p matrix with n > 1 and p > 1

y

response, an n-vector with n > 1

lam0

Initial penalty level. Default is sqrt(2 * log(p)/n)

LSE

If TRUE, compute least squares estimates after scaled Lasso selection. Default is FALSE

Value

sigma

the estimated noise level

coef

the estimated coefficients

fitted.value

the fitted value

residuals

the residuals

lse

the least square estimation after the seletion

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
## Not run: 
data(X)
attach(X)
data(Y)
attach(Y)
x = X
y = Y
pmle(x,y,lam0=3)$coef

## End(Not run)

Shenshiny/StatComp21010 documentation built on Dec. 23, 2021, 10:22 p.m.