tests/testthat/test_systematic.R

context("Forest sampling statistics calculations: systematic sample")

trainingData <- clusterBaData %>%
  filter(!is.na(bapa)) %>%
  group_by(clusterID) %>%
  sample_n(1) %>%
  ungroup() %>%
  rename(plots = clusterID)

test_that("systematic functions correctly with infiniteReplacement default", {
  systematic <- summarize_systematic(
    trainingData,
    attribute = "bapa",
    popSize = 50,
    desiredConfidence = 0.9
  )
  simple <- summarize_simple_random(
    trainingData,
    attribute = "bapa",
    popSize = 50,
    desiredConfidence = 0.9,
    infiniteReplacement = F
  )
  expect_equal(systematic, simple)
})


test_that("systematic functions correctly with vector and data frame input", {
  dataframe <- summarize_systematic(
    trainingData,
    attribute = "bapa",
    popSize = 50,
    desiredConfidence = 0.9
  )

  vector <- summarize_systematic(
    trainingData$bapa,
    popSize = 50,
    desiredConfidence = 0.9
  )

  expect_equal(dataframe, vector)
})
SilviaTerra/forestsamplr documentation built on Jan. 3, 2020, 2:33 p.m.