#' Volume function for for even-aged monocultures or mixed stands in Sweden.
#'
#' @source Ekö, Per Magnus (1985) "En produktionsmodell för skog i Sverige, baserad på bestånd från
#' riksskogstaxeringens provytor: A growth simulator for Swedish forests, based on
#' data from the national forest survey. Rapporter nr. 16. Swedish University of
#' Agricultural Sciences, dept. of Silviculture. Umeå. ISBN 91-576-2386-4. ISSN
#' 0348-8969. p. 105
#'
#' @description
#' \strong{Pine, northern Sweden}
#' Multiple correlation coefficient: 0.98
#'
#' Standard deviation about the function: 0.23
#'
#' Sf/Standard deviation about the mean: 0.17
#' \strong{Pine, central Sweden}
#' Multiple correlation coefficient: 0.98
#'
#' Standard deviation about the function: 0.23
#'
#' Sf/standard deviation about the mean: 0.17
#'
#' \strong{Pine, southern Sweden}
#' Multiple correlation coefficient: 0.98
#'
#' Standard deviation about the function: 0.23
#'
#' Sf/standard deviation about the mean: 0.18
#'
#' \strong{Norway Spruce, northern Sweden}
#' Multiple correlation coefficient: 0.98
#'
#' Standard deviation about the function: 0.29
#'
#' Sf/standard deviation about the mean: 0.20
#' \strong{Norway Spruce, central Sweden}
#' Multiple correlation coefficient: 0.98
#'
#' Standard deviation about the function: 0.29
#'
#' Sf/standard deviation about the mean: 0.20
#'
#' \strong{Norway Spruce, southern Sweden}
#' Multiple correlation coefficient: 0.99
#'
#' Standard deviation about the function: 0.25
#'
#' Sf/standard deviation about the mean: 0.17
#'
#' \strong{Birch, northern and central Sweden}
#' Multiple correlation coefficient: 0.95
#'
#' Standard deviation about the function: 0.39
#'
#' Sf/Standard deviation about the mean: 0.32
#'
#' \strong{Birch, southern Sweden}
#' Multiple correlation coefficient: 0.96
#'
#' Standard deviation about the function: 0.35
#'
#' Sf/Standard deviation about the mean: 0.26
#'
#' \strong{Broadleaves, northern and central Sweden}
#' Multiple correlation coefficient: 0.94
#'
#' Standard deviation about the function: 0.41
#'
#' Sf/Standard deviation about the mean: 0.33
#'
#' \strong{Broadleaves, southern Sweden}
#' Multiple correlation coefficient: 0.97
#'
#' Standard deviation about the function: 0.37
#'
#' Sf/Standard deviation about the mean: 0.26
#'
#' \strong{Beech}
#' Multiple correlation coefficient: 0.99
#'
#' Standard deviation about the function: 0.28
#'
#' Sf/Standard deviation about the mean: 0.17
#'
#'
#' \strong{Oak}
#' Multiple correlation coefficient: 0.97
#'
#' Standard deviation about the function: 0.39
#'
#' Sf/Standard deviation about the mean: 0.26
#'
#' @param basal_area.m2 Basal area over bark of Pine (m2/ha)
#' @param basal_area_other_species Basal area of other species on the plot. (m2/ha)
#' @param age_at_breast_height Age at breast height, calculated as the mean age of the two thickest trees (years).
#' @param stem_number_ha Number of stems per hectare.
#' @param SI Site index H100 Pine , m.
#' @param thinned 1 if the stand has been thinned before, otherwise 0.
#' @param thinned_previous_five_years 1 if the stand has been thinned during the last five years, otherwise 0.
#' @param thinned_before_previous_five_years 1 if the stand has been thinned before the last five years, otherwise 0.
#' @param basal_area_weighted_mean_diameter Diameter corresponding to mean basal area (m).
#' @param basal_area_weighted_mean_diameter_other_species Diameter corresponding to mean basal area (m) of other species on plot.
#' @param latitude Degrees.
#' @param altitude Meters above sea level.
#' @param vegetation Variable indicating vegetation type scaled from -5 to +4 as follows:
#'
#' \tabular{llr}{
#' Field Layer Code (NFI) \tab Description \tab Index \cr
#' 1\tab Tall herbs w/o dwarf shrubs \tab 4 \cr
#' 2\tab Tall herbs with bilberry \tab 2.5 \cr
#' 3\tab Tall herbs with cowberry \tab 2 \cr
#' 4\tab Low herbs w/o dwarf shrubs \tab 3 \cr
#' 5\tab Low herbs with bilberry \tab 2.5 \cr
#' 6\tab Low herbs with cowberry \tab 2 \cr
#' 7\tab No field layer \tab 3 \cr
#' 8\tab broad-leafed grasses \tab 2.5 \cr
#' 9\tab narrow-leaved grasses \tab 1.5 \cr
#' 10\tab Sedge, tall \tab -3 \cr
#' 11\tab Sedge, low \tab -3 \cr
#' 12\tab Horsetail \tab 1 \cr
#' 13\tab Bilberry \tab 0 \cr
#' 14\tab Cowberry \tab -0.5 \cr
#' 15\tab Crowberry \tab -3 \cr
#' 16\tab Poor shrub \tab -5 \cr
#' 17\tab Lichen-rich \tab -0.5 \cr
#' 18\tab Lichen-dominated \tab -1 \cr
#' }
#' @param fertilised 1 if the stand has been fertilised, otherwise 0.
#'
#' @return m3sk.
#' @export
#' @name PM_Vol
Eko_PM_1985_volume_central_Sweden_Pine <- function(
basal_area.m2,
basal_area_other_species,
age_at_breast_height,
stem_number_ha,
SI,
thinned,
basal_area_weighted_mean_diameter,
basal_area_weighted_mean_diameter_other_species
){
SIdm <- 10*SI
b1 <- -0.06
b2 <- -2.2
F4age <- (1 - exp(b1*age_at_breast_height))
F4basal_area <- (1- exp(b2*basal_area.m2))
lnVolume <-
+0.778157E-02*basal_area.m2+
+1.14159*log(basal_area.m2)
+0.927460*F4age+
-0.166730*log(stem_number_ha)+
+0.304900*log(SIdm)+
+0.270200E-01*thinned+
+0.292836E-02*(basal_area_weighted_mean_diameter_other_species/basal_area_weighted_mean_diameter)*basal_area_other_species+
+0.910330
return(exp(
lnVolume + 0.0273
))
}
#' @rdname PM_Vol
#' @export
Eko_PM_1985_volume_northern_Sweden_Pine <- function(
basal_area.m2,
basal_area_other_species,
age_at_breast_height,
stem_number_ha,
SI,
thinned_previous_five_years,
thinned_before_previous_five_years,
basal_area_weighted_mean_diameter,
basal_area_weighted_mean_diameter_other_species
){
SIdm <- 10*SI
b1 <- -0.06
b2 <- -2.3
F4age <- (1 - exp(b1*age_at_breast_height))
F4basal_area <- (1- exp(b2*basal_area.m2))
lnVolume <-
+1.24296*log(basal_area.m2)+
-0.472530*F4basal_area+
+1.05864*F4age+
-0.170140*log(stem_number_ha)+
+0.247550*log(SIdm)+
+0.213800E-01*thinned_before_previous_five_years+
+0.295300E-01*thinned_previous_five_years+
+0.510332E-02*(basal_area_weighted_mean_diameter_other_species/basal_area_weighted_mean_diameter)*basal_area_other_species+
+1.08339
return(exp(
lnVolume + 0.0275
))
}
#' @rdname PM_Vol
#' @export
Eko_PM_1985_volume_southern_Sweden_Pine <- function(
basal_area.m2,
basal_area_other_species,
age_at_breast_height,
stem_number_ha,
SI,
thinned,
vegetation,
basal_area_weighted_mean_diameter,
basal_area_weighted_mean_diameter_other_species
){
SIdm <- 10*SI
b1 <- -0.075
b2 <- -2.2
ground_veg_indicator <- if(vegetation%in%c(1:6,8,9)){
1
} else if(vegetation%in%c(1:9) && south_sweden==TRUE){
1
} else {
0
}
F4age <- (1 - exp(b1*age_at_breast_height))
F4basal_area <- (1- exp(b2*basal_area.m2))
lnVolume <-
+1.21272*log(basal_area.m2)+
-0.299900*F4basal_area+
+1.01970*F4age+
-0.172300*log(stem_number_ha)+
+0.369930*log(SIdm)+
+1.65136*log(latitutde)+
+0.349200E-01*log(altitude)+
-0.197100E-01*ground_veg_indicator+
+0.229100E-01*thinned+
+0.526017E-02*(basal_area_weighted_mean_diameter_other_species/basal_area_weighted_mean_diameter)*basal_area_other_species+
-6.46337
return(exp(
lnVolume + 0.0260
))
}
#' @rdname PM_Vol
#' @export
Eko_PM_1985_volume_northern_Sweden_Spruce <- function(
basal_area.m2,
basal_area_other_species,
age_at_breast_height,
stem_number_ha,
SI,
thinned,
basal_area_weighted_mean_diameter,
basal_area_weighted_mean_diameter_other_species
){
SIdm <- 10*SI
b1 <- -0.065
b2 <- -2.05
F4age <- (1 - exp(b1*age_at_breast_height))
F4basal_area <- (1- exp(b2*basal_area.m2))
lnVolume <-
+0.362521E-02*basal_area.m2+
+1.35682*log(basal_area.m2)+
-1.47258*basal_area_weighted_mean_diameter+
-0.438770*F4basal_area+
+1.46910*F4age+
-0.314730*log(stem_number_ha)+
+0.228700*log(SIdm)+
+0.118700E-01*thinned+
+0.254896E-02*(basal_area_weighted_mean_diameter_other_species/basal_area_weighted_mean_diameter)*basal_area_other_species+
+1.970094
return(exp(
lnVolume + 0.0388
))
}
#' @rdname PM_Vol
#' @export
Eko_PM_1985_volume_central_Sweden_Spruce <- function(
basal_area.m2,
basal_area_other_species,
age_at_breast_height,
stem_number_ha,
SI,
vegetation,
thinned,
basal_area_weighted_mean_diameter,
basal_area_weighted_mean_diameter_other_species
){
SIdm <- 10*SI
b1 <- -0.065
b2 <- -2.05
ground_veg_indicator <- if(vegetation%in%c(1:6,8,9)){
1
} else if(vegetation%in%c(1:9) && south_sweden==TRUE){
1
} else {
0
}
F4age <- (1 - exp(b1*age_at_breast_height))
F4basal_area <- (1- exp(b2*basal_area.m2))
lnVolume <-
+1.28359*log(basal_area.m2)+
-0.380690*F4basal_area+
+1.21756*F4age+
-0.216690*log(stem_number_ha)+
+0.350370*log(SIdm)+
+0.413000E-01*ground_veg_indicator+
+0.362100E-01*thinned+
+0.268645E-02*(basal_area_weighted_mean_diameter_other_species/basal_area_weighted_mean_diameter)*basal_area_other_species+
+0.700490
return(exp(
lnVolume + 0.0563
))
}
#' @rdname PM_Vol
#' @export
Eko_PM_1985_volume_southern_Sweden_Spruce <- function(
basal_area.m2,
basal_area_other_species,
age_at_breast_height,
stem_number_ha,
SI,
thinned,
basal_area_weighted_mean_diameter,
basal_area_weighted_mean_diameter_other_species
){
SIdm <- 10*SI
b1 <- -0.04
b2 <- -2.05
F4age <- (1 - exp(b1*age_at_breast_height))
F4basal_area <- (1- exp(b2*basal_area.m2))
lnVolume <-
+1.22886*log(basal_area.m2)+
-0.349820*F4basal_area+
+0.485170*F4age+
-0.152050*log(stem_number_ha)+
+0.337640*log(SIdm)+
+0.129800E-01*thinned+
+0.548055E-03*(basal_area_weighted_mean_diameter_other_species/basal_area_weighted_mean_diameter)*basal_area_other_species+
+0.584600
return(exp(
lnVolume + 0.0325
))
}
#' @rdname PM_Vol
#' @export
Eko_PM_1985_volume_northern_central_Sweden_Birch <- function(
basal_area.m2,
basal_area_other_species,
age_at_breast_height,
stem_number_ha,
SI,
latitude,
altitude,
fertilised,
thinned,
basal_area_weighted_mean_diameter,
basal_area_weighted_mean_diameter_other_species
){
SIdm <- 10*SI
b1 <- -0.035
b2 <- -2.05
F4age <- (1 - exp(b1*age_at_breast_height))
F4basal_area <- (1- exp(b2*basal_area.m2))
lnVolume <-
+1.26244*log(basal_area.m2)+
-0.459580*F4basal_area+
+0.540420*F4age+
-0.176040*log(stem_number_ha)+
+0.201360*log(SIdm)+
-1.68251*log(latitude)+
-0.404000E-01*log(altitude)+
+0.757200E-01*fertilised+
+0.301200E-01*thinned+
+0.401844E-02*(basal_area_weighted_mean_diameter_other_species/basal_area_weighted_mean_diameter)*basal_area_other_species+
+8.44862
return(exp(
lnVolume + 0.0755
))
}
#' @rdname PM_Vol
#' @export
Eko_PM_1985_volume_southern_Sweden_Birch <- function(
basal_area.m2,
basal_area_other_species,
age_at_breast_height,
stem_number_ha,
SI,
latitude,
fertilised,
thinned,
basal_area_weighted_mean_diameter,
basal_area_weighted_mean_diameter_other_species
){
SIdm <- 10*SI
b1 <- -0.07
b2 <- -2.1
F4age <- (1 - exp(b1*age_at_breast_height))
F4basal_area <- (1- exp(b2*basal_area.m2))
lnVolume <-
-0.786906E-02*basal_area.m2+
+1.35254*log(basal_area.m2)+
-1.30862*basal_area_weighted_mean_diameter+
-0.524630*F4basal_area+
+1.01779*F4age+
-0.254630*log(stem_number_ha)+
+0.204880*log(SIdm)+
+2.75025*log(latitude)+
+0.774000E-01*fertilised+
+0.434800E-01*thinned+
+0.250449E-02*(basal_area_weighted_mean_diameter_other_species/basal_area_weighted_mean_diameter)*basal_area_other_species+
-9.38127
return(exp(
lnVolume + 0.0595
))
}
#' @rdname PM_Vol
#' @export
Eko_PM_1985_volume_northern_central_Sweden_Broadleaves <- function(
basal_area.m2,
basal_area_other_species,
age_at_breast_height,
stem_number_ha,
SI,
latitude,
altitude,
thinned,
basal_area_weighted_mean_diameter,
basal_area_weighted_mean_diameter_other_species
){
SIdm <- 10*SI
b1 <- -0.04
b2 <- -2.3
F4age <- (1 - exp(b1*age_at_breast_height))
F4basal_area <- (1- exp(b2*basal_area.m2))
lnVolume <-
+1.26649*log(basal_area.m2)+
-0.580030*F4basal_area+
+0.486310*F4age+
-0.172050*log(stem_number_ha)+
+0.174930*log(SIdm)+
-1.51968*log(latitude)+
-0.368300E-01*log(altitude)+
+0.547400E-01*thinned+
+0.417126E-02*(basal_area_weighted_mean_diameter_other_species/basal_area_weighted_mean_diameter)*basal_area_other_species+
+7.79034
return(exp(
lnVolume + 0.0853
))
}
#' @rdname PM_Vol
#' @export
Eko_PM_1985_volume_southern_Sweden_Broadleaves <- function(
basal_area.m2,
basal_area_other_species,
age_at_breast_height,
stem_number_ha,
SI,
latitude,
thinned,
basal_area_weighted_mean_diameter,
basal_area_weighted_mean_diameter_other_species
){
SIdm <- 10*SI
total_basal_area <- basal_area.m2+basal_area_other_species
b1 <- -0.075
b2 <- -2.1
F4age <- (1 - exp(b1*age_at_breast_height))
F4basal_area <- (1- exp(b2*basal_area.m2))
lnVolume <-
-0.148700E-01*basal_area.m2+
+1.29359*log(basal_area.m2)+
-0.784820*F4basal_area+
+1.18741*F4age+
-0.135830*log(stem_number_ha)+
+0.219890*log(SIdm)+
+2.02656*log(latitude)+
+0.242500E-01*thinned+
+0.859600E-01*total_basal_area+
+0.509488E-03*(basal_area_weighted_mean_diameter_other_species/basal_area_weighted_mean_diameter)*basal_area_other_species+
+7.50102
return(exp(
lnVolume + 0.0671
))
}
#' @rdname PM_Vol
#' @export
Eko_PM_1985_volume_Sweden_Beech <- function(
basal_area.m2,
basal_area_other_species,
age_at_breast_height,
stem_number_ha,
SI,
thinned,
basal_area_weighted_mean_diameter,
basal_area_weighted_mean_diameter_other_species
){
SIdm <- 10*SI
b1 <- -0.02
b2 <- -2.3
F4age <- (1 - exp(b1*age_at_breast_height))
F4basal_area <- (1- exp(b2*basal_area.m2))
lnVolume <-
-0.111600E-01*basal_area.m2+
+1.30527*log(basal_area.m2)+
-0.676190*F4basal_area+
+0.490740*F4age+
-0.151930*log(stem_number_ha)+
-0.572600E-01*log(SIdm)+
+0.628000E-01*thinned+
+0.203927E-02*(basal_area_weighted_mean_diameter_other_species/basal_area_weighted_mean_diameter)*basal_area_other_species+
+2.85509
return(exp(
lnVolume + 0.0392
))
}
#' @rdname PM_Vol
#' @export
Eko_PM_1985_volume_Sweden_Oak <- function(
basal_area.m2,
basal_area_other_species,
age_at_breast_height,
stem_number_ha,
SI,
thinned,
basal_area_weighted_mean_diameter,
basal_area_weighted_mean_diameter_other_species
){
SIdm <- 10*SI
b1 <- -0.055
b2 <- -2.3
F4age <- (1 - exp(b1*age_at_breast_height))
F4basal_area <- (1- exp(b2*basal_area.m2))
lnVolume <-
-0.106300E-01*basal_area.m2+
+1.27353*log(basal_area.m2)+
-0.463790*F4basal_area+
+0.801580*F4age+
-0.157080*log(stem_number_ha)+
+0.159030*log(SIdm)+
+0.503200E-01*thinned+
+0.188030E-02*(basal_area_weighted_mean_diameter_other_species/basal_area_weighted_mean_diameter)*basal_area_other_species+
+1.40608
return(exp(
lnVolume + 0.0756
))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.