Description Usage Arguments Details Value Methods (by generic) See Also
A collection of functions to build weighted classification models.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | wclskSVM(object, valid = NULL, ...)
wclslSVM(object, valid = NULL, ...)
wclsLASSO(object, valid = NULL, ...)
wclsANN(object, valid = NULL, ...)
wclsDNN(object, valid = NULL, ...)
## S4 method for signature 'wClsObj'
wclskSVM(object, valid = NULL, ...)
## S4 method for signature 'wClsObj'
wclslSVM(object, valid = NULL, ...)
## S4 method for signature 'wClsObj'
wclsLASSO(object, valid = NULL, ...)
## S4 method for signature 'wClsObj'
wclsANN(object, valid = NULL, ...)
## S4 method for signature 'wClsObj'
wclsDNN(object, valid = NULL, ...)
|
object |
A |
valid |
A |
... |
Arguments passed to the function being called. |
These wcls
methods construct a single weighted classification model given a wClsObj
and a set of parameters. This function returns a ModelObj
.
Returns a ModelObj
object.
wclskSVM:
Method to build a (non-linear) kernel SVM weighted classification model using w.k.svm function.
wclslSVM:
Method to build a linear SVM weighted classification model using w.l.svm function.
wclsLASSO:
Method to build a weighted classification model using glmnet::glmnet.
wclsANN:
Method to build a weighted classification model using nnet::nnet.
wclsDNN:
Method to build a deep neural network weighted classification model using nn.classifier function.
reg
wcls
cvGrid
cvKfold
workflow
@examples
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.