w.k.svm: Weighted Kernel SVM classification Model

Description Usage Arguments Value See Also

View source: R/3-4-w-svm.R

Description

Fit a Weighted Kernel SVM classification Model

Usage

1
2
w.k.svm(Y, X, W = NULL, C = 1, kernel = "gaussian", gamma = 1/dim(X)[2],
  c = 0, d = 3)

Arguments

Y

A factor vector with two levels, a binary response.

X

A numeric matrix, the predictors.

W

A numeric matrix, the weights for all samples. The default is 1.

C

The coefficient for the regularizer.

kernel

The kernel function. gaussian: exp(-gamma*(u-v)^2) polynomial: (gamma*u*v + c)^d sigmoid: tanh(gamma*u*v + c)

gamma

Parameter needed for all kernels.

c

Parameter needed for polynomial and sigmoid kernels.

d

Parameter needed for sigmoid kernel.

Value

Returns a DnnModelObj object.

See Also

DnnModelObj-class


SkadiEye/ITRlearn documentation built on May 24, 2019, 1:31 a.m.