Description Usage Arguments Value See Also
Fit a Multilayer Perceptron Model for Regression or Classification
1 2 3 4 5 6 7 8 9 10 11  | dnnet(train, validate = NULL, norm.x = TRUE,
  norm.y = ifelse(is.factor(train@y), FALSE, TRUE), activate = "elu",
  n.hidden = c(10, 10), learning.rate = ifelse(learning.rate.adaptive %in%
  c("adam"), 0.001, 0.01), l1.reg = 0, l2.reg = 0, n.batch = 100,
  n.epoch = 100, early.stop = ifelse(is.null(validate), FALSE, TRUE),
  early.stop.det = 5, plot = FALSE, accel = c("rcpp", "gpu", "none")[3],
  learning.rate.adaptive = c("constant", "adadelta", "adagrad", "momentum",
  "adam")[2], rho = c(0.9, 0.95, 0.99, 0.999)[ifelse(learning.rate.adaptive ==
  "momentum", 1, 3)], epsilon = c(10^-10, 10^-8, 10^-6, 10^-4)[2],
  beta1 = 0.9, beta2 = 0.999, loss.f = ifelse(is.factor(train@y), "logit",
  "mse"), ...)
 | 
train | 
 A   | 
validate | 
 A   | 
norm.x | 
 A boolean variable indicating whether to normalize the input matrix.  | 
norm.y | 
 A boolean variable indicating whether to normalize the response (if continuous).  | 
activate | 
 Activation Function. One of the following, "sigmoid", "tanh", "relu", "prelu", "elu", "celu".  | 
learning.rate | 
 Initial learning rate, 0.001 by default; If "adam" is chosen as an adaptive learning rate adjustment method, 0.1 by defalut.  | 
l1.reg | 
 weight for l1 regularization, optional.  | 
l2.reg | 
 weight for l2 regularization, optional.  | 
n.batch | 
 Batch size for batch gradient descent.  | 
n.epoch | 
 Maximum number of epochs.  | 
early.stop | 
 Indicate whether early stop is used (only if there exists a validation set).  | 
early.stop.det | 
 Number of epochs of increasing loss to determine the early stop.  | 
plot | 
 Indicate whether to plot the loss.  | 
accel | 
 "rcpp" to use the Rcpp version and "none" (default) to use the R version for back propagation.  | 
learning.rate.adaptive | 
 Adaptive learning rate adjustment methods, one of the following, "constant", "adadelta", "adagrad", "momentum", "adam".  | 
epsilon | 
 A parameter used in Adagrad and Adam.  | 
beta1 | 
 A parameter used in Adam.  | 
beta2 | 
 A parameter used in Adam.  | 
loss.f | 
 Loss function of choice.  | 
Returns a DnnModelObj object.
dnnet-class
dnnetInput-class
actF
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.