## code to prepare `DATASET` dataset goes here
usethis::use_data(DATASET, overwrite = TRUE)
set.seed(1)
#set design
nsubj=10
conds = c('Easy', 'Diff')
ntrial=25 #trials per condition
acc_diff = 0.65 #mean accuracy in the difficult condition
acc_easy = 0.90 #mean accuracy in the easy condition
acc_diff_beta_pars = estBetaParams(acc_diff,std=.1)
acc_easy_beta_pars = estBetaParams(acc_easy,std=.1)
rt_diff = 2.15 #mean RT by condition
rt_easy = 1.35
rt_sd_between = 0.2
rt_sd_within = 0.5
#create grouping columns
cond = rep(conds, each=ntrial)
trial = rep(1:ntrial, length(conds))
#subject-lvl vars
acc_easys = rbeta(n=nsubj, shape1=acc_easy_beta_pars[[1]], shape2=acc_easy_beta_pars[[2]])
acc_diffs = rbeta(n=nsubj, shape1=acc_diff_beta_pars[[1]], shape2=acc_diff_beta_pars[[2]])
rt_easys = truncnorm::rtruncnorm(n=nsubj, a=0.2, b=3, mean=rt_easy, sd=rt_sd_between)
rt_diffs = truncnorm::rtruncnorm(n=nsubj, a=0.2, b=3, mean=rt_diff, sd=rt_sd_between)
#outcomes
sim = NULL
for (s in seq_along(1:nsubj)) {
choice = c(rbinom(n=ntrial, prob =acc_easys[s], size=1), #choosing the better option / accuracy
rbinom(n=ntrial, prob =acc_diffs[s], size=1))
rt=c(truncnorm::rtruncnorm(n=ntrial, a=0.2, b=3, mean=rt_easys[s], sd=rt_sd_within), #rt
truncnorm::rtruncnorm(n=ntrial, a=0.2, b=3, mean=rt_diffs[s], sd=rt_sd_within))
subj = tibble::tibble(
subjID = rep(s, length(choice)),
cond,
trial,
choice,
rt
)
sim=rbind(sim,subj)
}
usethis::use_data(sim, compress='xz')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.