Description Usage Arguments Value Examples
View source: R/gradient_boosting.R
Function that builds weak model on Gradient Boosting for regression task
1 | graboo_reg(x, y, last_est, loss = mse, eta = 0.1)
|
x |
- input independent variables x for the training |
y |
- input dependent variable y for the traisning |
last_est |
- the output estimate from the last step |
loss |
- the loss function used, its default value is the mean of the square error |
eta |
- the step size we use to update the total estimate each time, its default value is 0.1 |
The trained results of weak model on Gradient Boosting.
1 2 3 4 5 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.