graboo_reg: Function that builds weak model on Gradient Boosting for...

Description Usage Arguments Value Examples

View source: R/gradient_boosting.R

Description

Function that builds weak model on Gradient Boosting for regression task

Usage

1
graboo_reg(x, y, last_est, loss = mse, eta = 0.1)

Arguments

x

- input independent variables x for the training

y

- input dependent variable y for the traisning

last_est

- the output estimate from the last step

loss

- the loss function used, its default value is the mean of the square error

eta

- the step size we use to update the total estimate each time, its default value is 0.1

Value

The trained results of weak model on Gradient Boosting.

Examples

1
2
3
4
5
x <- matrix(rnorm(4000), 200, 20)
beta <- rnorm(5)
y <- x[, 1:length(beta)] %*% beta + rnorm(200)
last_est <- rep(0, ncol(x))
graboo_reg(x, y, last_est)

StevenBoys/Ensemblelearn documentation built on Dec. 11, 2019, 2:06 a.m.