#' Get the summary table of the bowling statistics
#' (across all IPL matches between 2008 and 2020)
#'
#'
#' @return `bowler_summary` returns the a data frame with the bowling statistics
#'
#' @examples
#'
#' library(ipl)
#'
#' # Get the summary table of the bowler statistics
#' bowler_summary()
#' @importFrom magrittr "%>%"
#' @import dplyr
#' @import ggplot2
#' @importFrom purrr map2_df
#'
#' @export
bowler_summary <- function() {
# most innings
value_mostInns <- max(bowlers_100$inns)
bowler_mosInns <- bowlers_100$player[bowlers_100$inns == value_mostInns]
# most matches
value_mostMat <- max(bowlers_100$mat)
bowler_mosMat <- bowlers_100$player[bowlers_100$mat == value_mostMat]
# most overs
value_mostOvers <- max(bowlers_100$ov)
bowler_mostOvers <- bowlers_100$player[bowlers_100$ov == value_mostOvers]
# most runs
value_mostRuns <- max(bowlers_100$runs)
bowler_mostRuns <- bowlers_100$player[bowlers_100$runs == value_mostRuns]
# most wickets
value_mostWkts <- max(bowlers_100$wkts)
bowler_mostWkts <- bowlers_100$player[bowlers_100$wkts == value_mostWkts]
# building each column
statistic <- c("Most Overs", "Most Runs", "Most Wickets", "Most Matches", "Most Innings")
bowler <- c(bowler_mostOvers, bowler_mostRuns, bowler_mostWkts, bowler_mosMat, bowler_mosInns)
value <- c(value_mostOvers, value_mostRuns, value_mostWkts, value_mostMat, value_mostInns)
# creating the df
summary_df <- data.frame(statistic, bowler, value)
return(summary_df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.