scDC_clustering | R Documentation |
Single-cell Differential Composition Analysis with performing clustering
scDC_clustering(
exprsMat = NULL,
cellTypes = NULL,
subject = NULL,
calCI = TRUE,
calCI_method = c("BCa", "multinom", "percentile"),
nboot = NULL,
conf_level = 0.95,
ncores = 1,
verbose = TRUE
)
exprsMat |
logcounts expression matrix with each row represents gene, and each column represents cell |
cellTypes |
A vector indicates the cell type info of the data |
subject |
A vector indicates the subject info of the data |
calCI |
A logical input for whether calculating the confidence interval for proportion |
calCI_method |
A string indicates the method that is used to calculate confidence interval. Options include |
nboot |
Number of bootstrap. If |
conf_level |
confidence level, with default 0.95 |
ncores |
Number of cores that are used. |
verbose |
A logical input for whether print the progress. |
Returns a data frame.
Yingxin Lin
## Loading example data
library(scDC)
data("sim")
cellTypes = sim$sim_cellTypes
subject = sim$sim_subject
## Not run:
res_noCALCI = scDC_clustering(cellTypes, subject, calCI = FALSE)
res_BCa = scDC_clustering(cellTypes, subject, calCI = TRUE, calCI_method = "BCa")
res_percentile = scDC_clustering(cellTypes, subject, calCI = TRUE, calCI_method = "percentile")
res_multinom = scDC_clustering(cellTypes, subject, calCI = TRUE, calCI_method = "multinom")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.