#' Cleans a member's state of residence, USA only.
#'
#' @param df a tibble of demographic data
#'
#' @return a tibble with cleaned column State_US
#' @export
#'
#' @examples #demo_raw <- step_state(df = demo_raw)
step_state <- function(df) {
state_abb <- as.factor(
c(
"AL","AK", "AZ", "AR", "CA", "CO", "CT", "DE", "FL", "GA", "HI", "ID", "IL",
"IN", "IA", "KS", "KY", "LA", "ME", "MD", "MA", "MI", "MN", "MS", "MO", "MT",
"NE", "NV", "NH", "NJ", "NM", "NY", "NC", "ND", "OH", "OK", "OR", "PA", "RI",
"SC", "SD", "TN", "TX", "UT", "VT", "VA", "WA", "WV", "WI", "WY",
"DC"
#, "GU", "VI"
)
)
df <-
df %>%
mutate(
STATE =
case_when(
.data$Country == 'Australia' & .data$STATE == 'WA' ~ 'NA',
TRUE ~ .data$STATE
)
)
# Impute Missing State Acronyms
# for one-off cases.
df[df$SID == 227392,'STATE'] <- 'IL'
df[df$SID == 223150,'STATE'] <- 'IL'
df[df$SID == 219042,'STATE'] <- 'PA'
df[df$SID == 220947,'STATE'] <- 'MA'
df[df$SID == 218993,'STATE'] <- 'CO'
df[df$SID == 227987,'STATE'] <- 'CT'
df[df$SID == 222591,'STATE'] <- 'AR'
df[df$SID == 219733,'STATE'] <- 'FL'
df[df$SID == 219923,'STATE'] <- 'FL'
df[df$SID == 221295,'STATE'] <- 'NY'
df[df$SID == 214853,'STATE'] <- 'NJ'
df[df$SID == 157171,'STATE'] <- 'NY'
df[df$SID == 215795,'STATE'] <- 'TX'
df[df$SID == 215155,'STATE'] <- 'MD'
df[df$SID == 212937,'STATE'] <- 'CA'
df[df$SID == 215144,'STATE'] <- 'CA'
df[df$SID == 172888,'STATE'] <- 'LA'
df %>%
rename('State_US' = .data$STATE) %>%
mutate(
State_US =
recode(
.data$State_US,
`Puerto Rico` = 'PR',
Florida = 'FL',
Illinois = 'IL'
)
) %>%
mutate(State_US =
factor(
.data$State_US,
levels = state_abb)) %>%
return()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.