Univariate and multivariate time series forecasting, with uncertainty quantification.
1st method: from R-universe
In R console:
```R options(repos = c( techtonique = 'https://techtonique.r-universe.dev', CRAN = 'https://cloud.r-project.org'))
install.packages("ahead") ```
2nd method: from Github
In R console:
R
devtools::install_github("Techtonique/ahead")
For univariate and multivariate time series.
dynrmf
(type ?dynrmf
in R console for more details) and Random Forest require(fpp)
par(mfrow=c(3, 2))
plot(dynrmf(USAccDeaths, h=20, level=95, fit_func = randomForest::randomForest,
fit_params = list(ntree = 50), predict_func = predict))
plot(dynrmf(AirPassengers, h=20, level=95, fit_func = randomForest::randomForest,
fit_params = list(ntree = 50), predict_func = predict))
plot(dynrmf(lynx, h=20, level=95, fit_func = randomForest::randomForest,
fit_params = list(ntree = 50), predict_func = predict))
plot(dynrmf(WWWusage, h=20, level=95, fit_func = randomForest::randomForest,
fit_params = list(ntree = 50), predict_func = predict))
plot(dynrmf(Nile, h=20, level=95, fit_func = randomForest::randomForest,
fit_params = list(ntree = 50), predict_func = predict))
plot(dynrmf(fdeaths, h=20, level=95, fit_func = randomForest::randomForest,
fit_params = list(ntree = 50), predict_func = predict))
dynrmf
and Support Vector Machines require(e1071)
par(mfrow=c(2, 2))
plot(dynrmf(fdeaths, h=20, level=95, fit_func = e1071::svm,
fit_params = list(kernel = "linear"), predict_func = predict))
plot(dynrmf(fdeaths, h=20, level=95, fit_func = e1071::svm,
fit_params = list(kernel = "polynomial"), predict_func = predict))
plot(dynrmf(fdeaths, h=20, level=95, fit_func = e1071::svm,
fit_params = list(kernel = "radial"), predict_func = predict))
plot(dynrmf(fdeaths, h=20, level=95, fit_func = e1071::svm,
fit_params = list(kernel = "sigmoid"), predict_func = predict))
For more examples on dynrmf
, you can read this blog post.
With ridge2f
(type ?ridge2f
in R console for more details), the model from :
Moudiki, T., Planchet, F., & Cousin, A. (2018). Multiple time series forecasting using quasi-randomized functional link neural networks. Risks, 6(1), 22.
require(fpp)
print(ahead::ridge2f(fpp::insurance)$mean)
print(ahead::ridge2f(fpp::usconsumption)$lower)
res <- ahead::ridge2f(fpp::insurance, lags=2)
par(mfrow=c(1, 2))
plot(res, "Quotes")
plot(res, "TV.advert")
Your contributions are welcome. Please, make sure to read the Code of Conduct first.
git remote set-url origin https://username:your_generated_token@github.com/xxx/repo.git
git remote set-url origin https://MY_GITHUB_TOKEN@github.com/Techtonique/ahead.git
BSD 3-Clause © Thierry Moudiki, 2019.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.