loocvridge2f | R Documentation |
LOOCV for Random Vector functional link network model with 2 regularization parameters
loocvridge2f(
y,
xreg = NULL,
h = 5,
level = 95,
lags = 1,
nb_hidden = 5,
nodes_sim = c("sobol", "halton", "unif"),
activ = c("relu", "sigmoid", "tanh", "leakyrelu", "elu", "linear"),
a = 0.01,
lambda_1 = 0.1,
lambda_2 = 0.1,
dropout = 0,
type_forecast = c("recursive", "direct"),
type_pi = c("gaussian", "bootstrap", "blockbootstrap", "movingblockbootstrap",
"rvinecopula", "splitconformal"),
block_length = NULL,
margins = c("gaussian", "empirical", "student"),
seed = 1,
B = 100L,
type_aggregation = c("mean", "median"),
centers = NULL,
type_clustering = c("kmeans", "hclust"),
ym = NULL,
cl = 1L,
show_progress = TRUE,
...
)
y |
A multivariate time series of class |
xreg |
External regressors. A data.frame (preferred) or a |
h |
Forecasting horizon |
level |
Confidence level for prediction intervals |
lags |
Number of lags |
Number of nodes in hidden layer | |
nodes_sim |
Type of simulation for nodes in the hidden layer |
activ |
Activation function |
a |
Hyperparameter for activation function "leakyrelu", "elu" |
lambda_1 |
Regularization parameter for original predictors |
lambda_2 |
Regularization parameter for transformed predictors |
dropout |
dropout regularization parameter (dropping nodes in hidden layer) |
type_forecast |
Recursive or direct forecast |
type_pi |
Type of prediction interval currently "gaussian", "bootstrap", "blockbootstrap", "movingblockbootstrap", "splitconformal" (very experimental right now), "rvinecopula" (with Gaussian margins for now, Student-t coming soon) |
block_length |
Length of block for circular or moving block bootstrap |
margins |
Distribution of margins: "gaussian", "empirical", "student" (postponed or
never) for |
seed |
Reproducibility seed for random stuff |
B |
Number of bootstrap replications or number of simulations (yes, 'B' is unfortunate) |
type_aggregation |
Type of aggregation, ONLY for bootstrapping; either "mean" or "median" |
centers |
Number of clusters for |
type_clustering |
"kmeans" (K-Means clustering) or "hclust" (Hierarchical clustering) |
ym |
Univariate time series ( |
cl |
An integer; the number of clusters for parallel execution, for bootstrap |
show_progress |
A boolean; show progress bar for bootstrapping? Default is TRUE. |
... |
Additional parameters to be passed to |
An object of class "mtsforecast"; a list containing the following elements:
method |
The name of the forecasting method as a character string |
mean |
Point forecasts for the time series |
lower |
Lower bound for prediction interval |
upper |
Upper bound for prediction interval |
sims |
Model simulations for bootstrapping (basic, or block) |
x |
The original time series |
residuals |
Residuals from the fitted model |
coefficients |
Regression coefficients for |
T. Moudiki
Moudiki, T., Planchet, F., & Cousin, A. (2018).
Multiple time series forecasting using quasi-randomized
functional link neural networks. Risks, 6(1), 22.
require(fpp)
print(ahead::loocvridge2f(fpp::insurance))
print(ahead::loocvridge2f(fpp::usconsumption))
#foo <- function(xx) ahead::loocvridge2f(fpp::insurance, lambda_1=10^xx[1], lambda_2=10^xx[2])
#(opt <- stats::nlminb(objective=foo, lower=c(-10,-10), upper=c(10,10), start=c(0, 0)))
#print(ahead::loocvridge2f(fpp::insurance, lambda_1=10^opt$par[1], lambda_2=10^opt$par[2]))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.