`%!in%` <- Negate(`%in%`)
if (is_tanzania) { uq_facilities <- params$research_facilities[, c("facility_id", "facility_name", "intervention")] %>% distinct() } else { uq_facilities <- params$research_facilities[, c("facility_id", "facility_name")] %>% distinct() }
if (!is.null(raw_day7fu_data)) { if (nrow(raw_day7fu_data) > 0) { raw_day7fu_data <- merge(x = raw_day7fu_data, y = uq_facilities, by.x = 'a1-fid', by.y = 'facility_id', all = FALSE) } }
cat(nrow(raw_hospit_data))
if (nrow(raw_hospit_data) > 0) { cols <- colnames(raw_hospit_data) if ('a1-fid' %!in% cols) { raw_hospit_data <- raw_hospit_data %>% dplyr::mutate('a1-fid' = substr(raw_hospit_data$'a1-id', 3, 7)) } raw_hospit_data <- merge(x = raw_hospit_data, y = uq_facilities, by.x = 'a1-fid', by.y = 'facility_id', all = FALSE) }
cat(nrow(raw_hospit_data))
if (!is.null(raw_day28fu_data)) { if (nrow(raw_day28fu_data) > 0) { raw_day28fu_data <- merge(x = raw_day28fu_data, y = uq_facilities, by.x = 'a1-fid', by.y = 'facility_id', all = FALSE) } }
n_total <- 0 # Screening data n_screened <- nrow(facility_data) screening_data <- timci::extract_screening_data(facility_data, is_pilot) visit_names <- c(screening_str) submissions <- c(n_screened) n_total <- n_total + n_screened study_data <- timci::extract_all_visits(facility_data) res <- timci::extract_enrolled_participants(facility_data) noneligible <- timci::extract_noneligible(facility_data) # Baseline data baseline_data <- timci::extract_baseline_visits(study_data) baseline_data <- timci::allocate_screening_facility(baseline_data, params$research_facilities) demog_data <- res[[1]] n_enrolled <- nrow(demog_data) n_enrolled7 <- nrow(dplyr::filter(demog_data, date_visit >= as.Date(end_date - 6))) n_enrolled28 <- nrow(dplyr::filter(demog_data, date_visit >= as.Date(end_date - 27))) visit_names <- c(visit_names, paste0(baseline_str, kableExtra::footnote_marker_number(1))) submissions <- c(submissions, n_enrolled) # Count facility submissions corresponding to repeat visits repeat_data <- timci::extract_repeat_visits(study_data) n_repeat <- nrow(repeat_data) visit_names <- c(visit_names, paste0(repeat_str, kableExtra::footnote_marker_number(2))) submissions <- c(submissions, n_repeat)
# Count Day 7 phone call submissions n_day7fu <- nrow(raw_day7fu_data) visit_names <- c(visit_names, day7_phone_call_str) submissions <- c(submissions, n_day7fu) n_total <- n_total + n_day7fu
if (!is.null(raw_day28fu_data)) { n_day28fu <- nrow(raw_day28fu_data) visit_names <- c(visit_names, "Day 28 phone call") submissions <- c(submissions, n_day28fu) n_total <- n_total + n_day28fu }
# Count hospital visit submissions n_hospit <- nrow(raw_hospit_data) visit_names <- c(visit_names, hospital_submission_str) submissions <- c(submissions, n_hospit) n_total <- n_total + n_hospit
# Count withdrawal submissions n_withdrawal <- nrow(raw_withdrawal_data) visit_names <- c(visit_names, withdrawal_str) submissions <- c(submissions, n_withdrawal) n_total <- n_total + n_withdrawal
day7fu_data <- NULL succ_day7fu_data <- NULL if (!is.null(raw_day7fu_data)) { if (nrow(raw_day7fu_data) > 0) { # Extract and clean all Day 7 follow-up data day7fu_data <- timci::format_day7_data(raw_day7fu_data)[[3]] day7fu_data <- day7fu_data[day7fu_data$child_id %in% baseline_data$child_id, ] # Extract and clean successful Day 7 follow-up data succ_day7fu_data <- timci::format_day7_data(raw_day7fu_data)[[1]] succ_day7fu_data <- clean_followup_for_rate_estimation(baseline_data, succ_day7fu_data) # Extract and clean all Day 7 follow-up attempts attempts_day7fu_data <- day7fu_data[day7fu_data$child_id %in% baseline_data$child_id, ] %>% dplyr::mutate(attempted_day7 = 1) %>% dplyr::distinct_at(dplyr::vars(child_id), .keep_all = TRUE) n_completed_day7fu <- sum((as.Date(succ_day7fu_data$date_day0, "%Y-%m-%d") + day7_wmin) <= Sys.Date(), na.rm = TRUE) n_valid_day7fu <- sum(((as.Date(succ_day7fu_data$date_day0, "%Y-%m-%d") + day7_wmin) <= Sys.Date()) & (succ_day7fu_data$days >= day7_wmin) & (succ_day7fu_data$days <= day7_wmax), na.rm = TRUE) } else { n_completed_day7fu <- 0 n_valid_day7fu <- 0 } } else { n_completed_day7fu <- 0 n_valid_day7fu <- 0 }
n_due_day7fu <- sum((as.Date(demog_data$date_visit, "%Y-%m-%d") + day7_wmin) <= Sys.Date(), na.rm = TRUE)
selected_variables <- c("child_id", "facility_name", "date_visit", "district", "referral_cg", "referral_hf") if (is_tanzania) { selected_variables <- c(selected_variables)#, "location") } all <- baseline_data[, selected_variables] if (!is.null(day7fu_data)) { if (nrow(day7fu_data) > 0) { all <- all %>% merge(y = succ_day7fu_data[, c("child_id", "proceed_day7", "hf_visit_type", "status_day7", "admission", "date_call")], by = 'child_id', all.x = TRUE) %>% merge(y = attempts_day7fu_data[, c("child_id", "attempted_day7")], by = 'child_id', all.x = TRUE) } }
n_due_hospitfu <- 0 if (!is.null(all)) { n_due_hospitfu <- sum((all$status_day7 == 2) | (all$admission == 1), na.rm = TRUE) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.