\newpage
write("Export Day 28 follow-up outcome data (successful follow-ups only) and run corresponding quality checks", stderr())
n_fu_prior_day0_day28fu <- 0 n_death_prior_day0_day28fu <- 0 n_hospit_prior_day0_day28fu <- 0 n_death_prior_hospit_day28fu <- 0
This section only focus on successful follow-ups, i.e. follow-ups where the participant was successfully reached and where follow-up outcomes were collected.
day28fu_data <- allday28fu_data %>% dplyr::filter( proceed_day28 == 1 ) n_raw_successday28fu_records <- nrow(day28fu_data) day28fu_is_not_null <- !is.null(day28fu_data) day28fu_is_not_empty <- timci::is_not_empty(day28fu_data)
Among the r n_cleaned_allday28fu_records
cleaned r db_name
record(s), there are r n_raw_successday28fu_records
record(s) corresponding to successful Day 28 follow-up(s).
day28fu_data <- day28fu_data %>% dplyr::mutate(window = ifelse(days >= 28 & days <= 32, 1, 0))
r qc_duplicated_day28fu
]qc_description <- "It is possible to have more than one successful follow-up records available for the same participant. In this case, following the guidance from the statistical analysis plan, Only the most recent successful Day 28 follow-up is kept." qc_rule <- "Delete all older records and keep only the most recent when more than one successful follow-up is available for the same participant." qc_type <- "duplicates" df <- day28fu_data col_id <- "child_id" col_date <- "start" cleaning <- "keep_latest" qc_text <- "duplicated IDs" qc_idx <- qc_duplicated_day28fu qc_export_label <- "duplicated_successful_day28fu" qc_export_description <- "Day 28 follow-ups are duplicated" cat(knitr::knit_child('database_export_sub_quality_check.Rmd', envir = environment(), quiet = TRUE))
n_dropped_duplicate_day28fu_records <- nrow(day28fu_data) - nrow(cleaned_df) day28fu_data <- cleaned_df
r qc_missing_hospit_date_day28fu
]write(" o Missing date of hospitalisation", stderr())
r qc_hospit_before_enrolment_day28fu
]write(" o Invalid date of hospitalisation", stderr())
qc_description <- "The reported hospital visit should have happened between enrolment at Day 0 and the Day 28 follow-up." qc_rule <- action_alert_no_modification qc_type <- "date_discrepancy_fu" df <- day28fu_data %>% merge(day0_data %>% dplyr::select(child_id, date_visit, hospit, journey, prev_hf_type, prev_hosp), by = "child_id", all.x = TRUE) %>% merge(day7fu_data %>% dplyr::select(child_id, date_hosp_day7), by = "child_id", all.x = TRUE) col_date1 <- "date_hosp_day28" col_date2 <- "date_visit" fu_cols <- c("hospit", "journey", "prev_hf_type", "prev_hosp") qc_text <- "a date of hospitalisation before the enrolment date" qc_idx <- qc_hospit_before_enrolment_day28fu qc_export_label <- "hospit_before_enrolment" qc_export_description <- "the reported date of hospitalisation was before the enrolment date" cat(knitr::knit_child('database_export_sub_quality_check.Rmd', envir = environment(), quiet = TRUE))
r qc_missing_death_date_day28fu
]write(" o Missing date of death", stderr())
r qc_death_before_enrolment_day28fu
]write(" o Invalid date of death", stderr())
qc_description <- "The reported death should have happened between enrolment at Day 0 and the Day 28 follow-up." qc_rule <- action_alert_no_modification qc_type <- "date_discrepancy" df <- day28fu_data %>% merge(day0_data %>% dplyr::select(child_id, date_visit), by = "child_id", all.x = TRUE) col_date1 <- "date_death_day28" col_date2 <- "date_visit" qc_text <- "a date of death before the enrolment date" qc_idx <- qc_death_before_enrolment_day28fu qc_export_label <- "death_before_enrolment" qc_export_description <- "the reported date of death was before the enrolment date" cat(knitr::knit_child('database_export_sub_quality_check.Rmd', envir = environment(), quiet = TRUE))
write(" o Pseudonymisation", stderr())
The columns listed in the table below are dropped from the cleaned r db_name
database.
day28fu_pii_drops %>% dplyr::select(new) %>% knitr::kable(row.names = FALSE, col.names = c("Database reference"), caption = "Columns dropped for the cleaned data export")
day28fu_data_no_pii <- day28fu_data %>% dplyr::select(dplyr::any_of(c(day28fu_deidentified_dict$new)))
Pseudonymisation is performed using a cryptographic hash function (md5) that takes strings as input (variables uuid,child_id, and device_id) and produces a random-like fixed-length output.
day28fu_data_no_pii <- day28fu_data_no_pii %>% dplyr::rowwise() %>% dplyr::mutate(uuid = ifelse(uuid != "", digest(uuid, algo = crypto_algo), ""), child_id = ifelse(child_id != "", digest(child_id, algo = crypto_algo), ""), device_id = ifelse(device_id != "", digest(device_id, algo = crypto_algo), "")) %>% dplyr::ungroup()
n_cleaned_day28fu_records <- nrow(day28fu_data_no_pii)
write(" o Data cleaning summary", stderr())
timci::create_day28fu_outcome_qc_flowchart(n_raw_successday28fu_records, n_dropped_duplicate_day28fu_records, n_fu_prior_day0_day28fu, n_death_prior_day0_day28fu, n_hospit_prior_day0_day28fu, n_death_prior_hospit_day28fu, n_cleaned_day28fu_records)
skimr::skim(day28fu_data)
write(" o Data export", stderr())
timci::dataset_export(raw_successday28fu_data, "06b", "timci_followup_successful_day28_data", rctls_dir, "Raw successful Day 28 follow-up only)")
timci::dataset_export(day28fu_data_no_pii, "06b", "timci_followup_successful_day28_data", locked_db_dir, "Cleaned successful Day 28 follow-up data")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.