#' Batch Generate CSV Training Files
#'@param raster_path A list of paths to the classified high-resolution imagery (use list.files)
#'@param inPredImage Name and path for the input image that will be used for predictions (Landsat/MODIS)
#'@param fromVals vector of the values in classified image
#'@param toVals vector which values will be changes too
#'@param ndPred No data value for the prediction image (normally 0)
#'
#'@description
#'
#'Preforms a batch implementation of the csv_create function, allowing multiple high-res images to to processed into training files
#'at the same time.
#'@examples
#'Landsat_SA_CRS <-"..//Landsat_SA_CRS//Landsat_SA_AEA.tif"
#'shrub_mask_list <-list.files(path = "F:\\Projects\\Shrub_cover\\NGI_aerial_imagery\\shrub_masks\\",pattern = "*tif$",full.names = TRUE)
#'set.seed(seed = 33)
#'percent_cover <-csv_batch(raster_path = shrub_mask_list,inPred = Landsat_SA_CRS,numSamps = 5000)
#' Class numbers that will be mapped using the following scheme:
#' 0 = no data such as background, clouds and shadow
#' 1 = class for which percent cover is being calculated
#' 2 = all other land cover classes
#' fromVals <- c(0,1, 2, 3)
#' toVals <- c(2,1, 2, 2)
csv_batch <- function(raster_path,inPred,numSamps, fromVals,toVals){
mat <- sapply(X = raster_path,FUN = create_csv, inPred=inPred,numSamps=numSamps,fromVals=fromVals,toVals=toVals)
len <- length(raster_path)
x <- as.vector(mat[1:(nrow(x = mat)/3),1:len])
y <- as.vector(mat[((nrow(x = mat)/3)+1):((nrow(x = mat)/3)*2),1:len])
pc <- as.vector(mat[(((nrow(x = mat)/3)*2)+1):(nrow(x = mat)),1:len])
pc.df <- data.frame(x,y,pc)
return(pc.df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.