convertPars | R Documentation |
Converts either a vector of parameters, or a matrix of many parameter sets to model x,y coordinates (date and pdf) \loadmathjax
convertPars(pars, years, type, timeseries = NULL)
pars |
Either a numeric vector (one parameter set), or a matrix of several parameter sets (one set per row). |
years |
A vector of years. |
type |
Choose from the following currently available |
timeseries |
A data frame containing names x and y (date and pdf) must be provided as the timeseries, only if type is 'timeseries'. If 'type' is anything else, timeseries is not required (default = NULL). |
Converts model parameters into a timeseries. For example, a parameter search will yield either a single set of parameters, or a matrix with one parameter set per row (such as the 'res' value from mcmc
). Either can be handed directly to this function.
The structure of the output differs depending on if converting a vector or matrix.
# a random 6-CPL parameter set
pars <- runif(11)
x <- convertPars( pars=pars, years=5500:7500, type='CPL')
# a matrix of 5 random 6-CPL parameter sets
pars <- matrix( runif(11*5), 5, 11 )
x <- convertPars( pars=pars, years=5500:7500, type='CPL')
# a random exponential parameter
pars <- runif(1, -0.01, 0.01)
x <- convertPars( pars=pars, years=5500:7500, type='exp')
# a matrix of 5 random exponential parameter sets
pars <- matrix( runif(5, -0.01, 0.01), 5, 1 )
x <- convertPars( pars=pars, years=5500:7500, type='exp')
# a random Gaussian parameter pair (mean, sd)
pars <- runif(2, c(6000,200), c(7000,1000))
x <- convertPars( pars=pars, years=5500:7500, type='norm')
# a combination model of a Gaussian (parameters = mean, sd),
# and a power model assumed to be a taphonomic effect (parameters = b,c).
pars <- runif(4, c(6000,200,0,-3), c(7000,1000,20000,0))
x <- convertPars( pars=pars, years=5500:7500, type=c('norm','power'))
# 5 combination models of a Gaussian (parameters = mean, sd),
# and a power model assumed to be a taphonomic effect (parameters = b,c).
pars <- t(matrix(runif(4*5, c(6000,200,0,-3), c(7000,1000,20000,0)),4,5))
x <- convertPars( pars=pars, years=5500:7500, type=c('norm','power'))
# a single random Cauchy parameter pair (location, scale)
pars <- runif(2, c(6000,200), c(7000,1000))
x <- convertPars( pars=pars, years=5500:7500, type='cauchy')
# a combination model of a Cauchy (parameters = location, scale),
# and a power model assumed to be a taphonomic effect (parameters = b,c).
pars <- runif(4, c(6000,200,0,-3), c(7000,1000,20000,0))
x <- convertPars( pars=pars, years=5500:7500, type=c('norm','power'))
# a single random logistic parameter pair (k, x0)
pars <- runif(2, c(0,6000), c(0.01,6500))
x <- convertPars( pars=pars, years=5500:7500, type='logistic')
# a combination model of a logistic (parameters = k, x0),
# and a power model assumed to be a taphonomic effect (parameters = b,c).
pars <- runif(4, c(0,6000,0,-3), c(0.01,6500,20000,0))
x <- convertPars( pars=pars, years=5500:7500, type=c('logistic', 'power'))
# a single random sinewave parameter set (f,p,r)
f <- 1/runif(1,200,1000)
p <- runif(1,0,2*pi)
r <- runif(1,0,1)
x <- convertPars( pars=c(f,p,r), years=5500:7500, type='sine')
# a combination model of a sinewave (parameters = f,p,r),
# and a power model assumed to be a taphonomic effect (parameters = b,c).
f <- 1/runif(1,200,1000)
p <- runif(1,0,2*pi)
r <- runif(1,0,1)
b <- runif(1,0,20000)
c <- runif(1,-3,0)
x <- convertPars( pars=c(f,p,r,b,c), years=5500:7500, type=c('sine','power'))
# although a uniform distribution has no parameters, a pdf can still be generated:
# pars must be set to NA
x <- convertPars(pars=NA, years=5500:7500, type='uniform')
# a uniform combined with a power model (assumed to be a taphonomic effect):
# the parameter for the uniform component must be set to NA
pars <- c(NA, runif(2, c(0,-3), c(20000,0)))
x <- convertPars(pars=pars, years=5500:7500, type=c('uniform','power'))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.