RepetPlan is an R package developed to obtain failured-censored repetitive group sampling plans.
To install the current version of the code from Zenodo:
if(!require(zen4r)){install.packages("zen4r")}  #install if needed
zen4r::download_zenodo("10.5281/zenodo.5035779")
install.packages("RepetPlan-1.0.3.zip", repos = NULL) 
To install the current version of the code from GitHub:
if(!require(devtools)){install.packages("devtools")}  #install if needed
devtools::install_github("ULL-STAT/RepetPlan")
To load the RepetPlan package:
# load library and dependant libraries 
library(RepetPlan)
To see all available functions in the package use the command below
# To get index of help on all functions
help(package="RepetPlan")
Suppose that T represents a lifetime variable and X = log (T) follows a log-location and scale distribution. This is an example which shows how to determine the designs of conventional censored repetitive sampling plans for the given requirements of maximum risks and quality levels
risks<-c(0.05,0.10)     #vector of producer and consumer maximum sampling risks
p<-c(0.00654, 0.0426)   #vector of acceptance and rejection quality levels
q<- 0.1                 #censoring degree
asvar<-asympt.var(q,"normal")    #asymptotical variance-covariance matrix of MLE estimators of location and scale paramters
designs<-rep.plan(risks,p,asvar) #designs satisfying the previous requirements
The first designs returned by the function rep.plan() are
q n kr ka termcd message p_alpha p_beta dist alpha beta asn_alpha asn_beta asn_avg p_asn_max asn_max 0.1 49 2.053225 2.055370 1 Function criterion near zero 0.00654 0.0426 normal 0.05 0.1 49.04823 49.06290 49.05557 0.0188643 49.16223 0.1 48 2.048891 2.060242 1 Function criterion near zero 0.00654 0.0426 normal 0.05 0.1 48.25590 48.32952 48.29271 0.0188293 48.84398 0.1 47 2.044397 2.065329 1 Function criterion near zero 0.00654 0.0426 normal 0.05 0.1 47.47311 47.60146 47.53728 0.0187927 48.52982 0.1 46 2.039733 2.070647 1 Function criterion near zero 0.00654 0.0426 normal 0.05 0.1 46.70045 46.87892 46.78969 0.0187547 48.22016 0.1 45 2.034888 2.076213 1 Function criterion near zero 0.00654 0.0426 normal 0.05 0.1 45.93857 46.16215 46.05036 0.0187151 47.91550 0.1 44 2.029850 2.082044 1 Function criterion near zero 0.00654 0.0426 normal 0.05 0.1 45.18813 45.45141 45.31977 0.0186738 47.61636The ASNavg-optimal design can be obtained as
optimal.design<-designs %>% group_by(q,dist,p_alpha,p_beta) %>%
  filter( (abs(alpha-risks[1])<1e-05) & (abs(risks[2]-beta)<1e-05) & (termcd==1)) %>%
  slice(which.min(asn_avg)) %>% arrange(q,p_alpha,p_beta) %>% as.data.frame()
q
n
kr
ka
termcd
message
p_alpha
p_beta
dist
alpha
beta
asn_alpha
asn_beta
asn_avg
p_asn_max
asn_max
0.1
21
1.799825
2.3974
1
Function criterion near zero
0.00654
0.0426
normal
0.05
0.1000001
34.71139
32.27409
33.49274
0.0168694
46.02262
In this case, the censored repetitive sampling plans can be determined when a GB prior is assumed and there is available knowledge about the mean and variance of p. For given requirements of maximum expected risks and quality levels, the sampling plans are
risks<-c(0.05,0.10)     #vector of producer and consumer maximum sampling risks
p<-c(0.00654, 0.0426)   #vector of acceptance and rejection quality levels
q<- 0.1                 #censoring degree
asvar<-asympt.var(q,"normal")    #asymptotical variance-covariance matrix of MLE estimators of location and scale paramters
l<- p[1]/5              #lower limit of p
u<- p[2]+(p[1]-l)       #upper limit of p
# GB parameters for a knowledge of mean and variance of p distribution
know_p<-list(mean_p=p[1],var_p=((p[2]-p[1])/4)^2)
beta.parms<-beta.params(p,l,u, know_p)
designs<-repGBprior.plan(risks,p,asvar, beta.parms)
Then, the function repGBprior.plan() returns these designs. The first plans are
q n n_low n_up kr ka termcd message p_alpha p_beta a b l u mean_p var_p dist alpha beta asn_alpha asn_beta asn_avg easn p_asn_max asn_max 0.1 24 3 49 2.200833 2.200877 1 Function criterion near zero 0.00654 0.0426 0.1862234 1.469713 0.001308 0.047832 0.00654 8.13e-05 normal 0.0500619 0.1000161 24.00090 24.00042 24.00066 24.00039 0.0121556 24.00107 0.1 23 3 49 2.187946 2.216942 1 Function criterion near zero 0.00654 0.0426 0.1862234 1.469713 0.001308 0.047832 0.00654 8.13e-05 normal 0.0500908 0.1000238 23.58511 23.27324 23.42917 23.30382 0.0120410 23.69109 0.1 22 3 49 2.173528 2.234751 1 Function criterion near zero 0.00654 0.0426 0.1862234 1.469713 0.001308 0.047832 0.00654 8.13e-05 normal 0.0500003 0.1000001 23.20269 22.56201 22.88235 22.63308 0.0119251 23.40886 0.1 21 3 49 2.158403 2.254219 1 Function criterion near zero 0.00654 0.0426 0.1862234 1.469713 0.001308 0.047832 0.00654 8.13e-05 normal 0.0500319 0.1000146 22.82986 21.85480 22.34233 21.97611 0.0118011 23.12469 0.1 20 3 49 2.142068 2.275593 1 Function criterion near zero 0.00654 0.0426 0.1862234 1.469713 0.001308 0.047832 0.00654 8.13e-05 normal 0.0500924 0.1000943 22.47555 21.15569 21.81562 21.34039 0.0116246 22.84847 0.1 19 3 49 2.123503 2.300221 1 Function criterion near zero 0.00654 0.0426 0.1862234 1.469713 0.001308 0.047832 0.00654 8.13e-05 normal 0.0500073 0.1000022 22.18107 20.48217 21.33162 20.74946 0.0114847 22.62697and the EASN-optimal design is obtained as
optimal.design<-designs %>% group_by(q,dist,p_alpha,p_beta) %>%
                 filter( (abs(alpha-risks[1])<1e-05) & 
                           (abs(risks[2]-beta)<1e-05) & (termcd==1)) %>%
                 group_by(q,p_alpha,p_beta,a,b,l,u,dist) %>%
                 mutate(easn_min=min(easn)) %>%
                 slice(which.min(easn)) %>% as.data.frame()
q
n
n_low
n_up
kr
ka
termcd
message
p_alpha
p_beta
a
b
l
u
mean_p
var_p
dist
alpha
beta
asn_alpha
asn_beta
asn_avg
easn
p_asn_max
asn_max
easn_min
0.1
12
3
49
1.921685
2.611877
1
Function criterion near zero
0.00654
0.0426
0.1862234
1.469713
0.001308
0.047832
0.00654
8.13e-05
normal
0.05
0.1000001
21.7853
16.33357
19.05943
18.15345
0.0099061
22.38735
18.15345
      
      Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.