#' Read in physicians npi data
#' @description used in step3_professional
#' combine all years physician to one dataset and delete who have missing NPI
#'
#' @param year year of medicare data
#' @param data_file_name original medicare dataset names
#' @param schema defined in csv file. default is "professional"
#' @param src_root locations of carrier line on database
#' @param mapping_data: select medicare original vars to mapped vars
#'
#' @return combined physician NPI across years
#' @export
#' @details 1.read all NPIs info across years from carrier line file
#' 2. rename NPI variable
#' 3. Combine all NPIs and delete NA values
#'
#' @examples
professionals <- function(year, data_file_name, schema, src_root, mapping_data = import_mapping) {
# read in data loc, variable names
map <- mapping_data %>%
filter(source_schema == schema)
src_file_loc <- paste0(src_root, data_file_name)
# read medicare files
# data.table::fread(src_file_loc, select = map$source_column, colClasses = "character") %>%
# rename_all(~ map$target_column) %>%
# filter(!is.na(provider_npi) & provider_npi != "") %>%
# setDT()
prof_clm = data.table::fread(src_file_loc, select = map$source_column, colClasses = "character",
nThread = 10)
setnames(prof_clm, new = map$target_column)
prof_clm[!is.na(provider_npi) & provider_npi != ""]
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.