View source: R/deprecated_fun.R
est.lucid | R Documentation |
This function deprecates. Please use est_lucid instead.
est.lucid( G, Z, Y, CoG = NULL, CoY = NULL, K = 2, family = c("normal", "binary"), useY = TRUE, tol = 0.001, max_itr = 1000, max_tot.itr = 10000, Rho_G = 0, Rho_Z_Mu = 0, Rho_Z_Cov = 0, modelName = "VVV", seed = 123, init_impute = c("mclust", "lod"), init_par = c("mclust", "random"), verbose = FALSE )
G |
Exposures, a numeric vector, matrix, or data frame. Categorical variable should be transformed into dummy variables. If a matrix or data frame, rows represent observations and columns correspond to variables. |
Z |
Omics data, a numeric matrix or data frame. Rows correspond to observations and columns correspond to variables. |
Y |
Outcome, a numeric vector. Categorical variable is not allowed. Binary outcome should be coded as 0 and 1. |
CoG |
Optional, covariates to be adjusted for estimating the latent cluster. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables. |
CoY |
Optional, covariates to be adjusted for estimating the association between latent cluster and the outcome. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables. |
K |
Number of latent clusters. An integer greater or equal to 2. User
can use |
family |
Distribution of outcome. For continuous outcome, use "normal"; for binary outcome, use "binary". Default is "normal". |
useY |
Flag to include information of outcome when estimating the latent cluster. Default is TRUE. |
tol |
Tolerance for convergence of EM algorithm. Default is 1e-3. |
max_itr |
Max number of iterations for EM algorithm. |
max_tot.itr |
Max number of total iterations for |
Rho_G |
A scalar. This parameter is the LASSO penalty to regularize
exposures. If user wants to tune the penalty, use the wrapper
function |
Rho_Z_Mu |
A scalar. This parameter is the LASSO penalty to
regularize cluster-specific means for omics data (Z). If user wants to tune the
penalty, use the wrapper function |
Rho_Z_Cov |
A scalar. This parameter is the graphical LASSO
penalty to estimate sparse cluster-specific variance-covariance matrices for omics
data (Z). If user wants to tune the penalty, use the wrapper function |
modelName |
The variance-covariance structure for omics data.
See |
seed |
An integer to initialize the EM algorithm or imputing missing values. Default is 123. |
init_impute |
Method to initialize the imputation of missing values in
LUCID. "mclust" will use |
init_par |
Method to initialize the EM algorithm. "mclust" will use mclust model to initialize parameters; "random" initialize parameters from uniform distribution. |
verbose |
A flag indicates whether detailed information for each iteration of EM algorithm is printed in console. Default is FALSE. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.