tune_lucid | R Documentation |
Given a grid of K and L1 penalties (incluing Rho_G, Rho_Z_mu and Rho_Z_Cov), fit LUCID model over all combinations of K and L1 penalties to determine the optimal penalty.
tune_lucid( G, Z, Y, CoG = NULL, CoY = NULL, family = "normal", K = 2:5, Rho_G = 0, Rho_Z_Mu = 0, Rho_Z_Cov = 0, ... )
G |
Exposures, a numeric vector, matrix, or data frame. Categorical variable should be transformed into dummy variables. If a matrix or data frame, rows represent observations and columns correspond to variables. |
Z |
Omics data, a numeric matrix or data frame. Rows correspond to observations and columns correspond to variables. |
Y |
Outcome, a numeric vector. Categorical variable is not allowed. Binary outcome should be coded as 0 and 1. |
CoG |
Optional, covariates to be adjusted for estimating the latent cluster. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables. |
CoY |
Optional, covariates to be adjusted for estimating the association between latent cluster and the outcome. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables. |
family |
Distribution of outcome. For continuous outcome, use "normal"; for binary outcome, use "binary". Default is "normal". |
K |
Number of latent clusters. An integer greater or equal to 2. If K is a vector, model selection on K is performed |
Rho_G |
A scalar or a vector. This parameter is the LASSO penalty to regularize
exposures. If it is a vector, |
Rho_Z_Mu |
A scalar or a vector. This parameter is the LASSO penalty to
regularize cluster-specific means for omics data (Z). If it is a vector,
|
Rho_Z_Cov |
A scalar or a vector. This parameter is the graphical LASSO
penalty to estimate sparse cluster-specific variance-covariance matrices for omics
data (Z). If it is a vector, |
... |
Other parameters passed to |
A list:
best_model |
the best model over different combination of tuning parameters |
tune_list |
a data frame contains combination of tuning parameters and c orresponding BIC |
res_model |
a list of LUCID models corresponding to each combination of tuning parameters |
## Not run: # use simulated data G <- sim_data$G Z <- sim_data$Z Y_normal <- sim_data$Y_normal # find the optimal model over the grid of K tune_K <- tune_lucid(G = G, Z = Z, Y = Y_normal, useY = FALSE, tol = 1e-3, seed = 1, K = 2:5) # tune penalties tune_Rho_G <- tune_lucid(G = G, Z = Z, Y = Y_normal, useY = FALSE, tol = 1e-3, seed = 1, K = 2, Rho_G = c(0.1, 0.2, 0.3, 0.4)) tune_Rho_Z_Mu <- tune_lucid(G = G, Z = Z, Y = Y_normal, useY = FALSE, tol = 1e-3, seed = 1, K = 2, Rho_Z_Mu = c(10, 20, 30, 40)) tune_Rho_Z_Cov <- tune_lucid(G = G, Z = Z, Y = Y_normal, useY = FALSE, tol = 1e-3, seed = 1, K = 2, Rho_Z_Cov = c(0.1, 0.2, 0.3)) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.