find_markers: A function for finding markers for hidden factors

Description Usage Arguments Value Examples

View source: R/find_markers.R

Description

Function takes a read counts matrix of entire gene set and a matrix of surrogate variables estimated by IA-SVA as input, identifies marker genes highly correlated with each surrogate variable and returns a read counts matrix of the markers.

Usage

1
2
3
4
5
6
7
8
find_markers(
  Y,
  iasva.sv,
  method = "BH",
  sig.cutoff = 0.05,
  rsq.cutoff = 0.3,
  verbose = FALSE
)

Arguments

Y

A SummarizedExperiment or SingleCellExperiment class containing read counts where rows represent genes and columns represent samples.

iasva.sv

matrix of estimated surrogate variables, one column for each surrogate variable.

method

multiple testing adjustment method, default = "BH".

sig.cutoff

significance cutoff.

rsq.cutoff

R squared cutoff.

verbose

If verbose = TRUE, the function outputs detailed messages.

Value

marker.counts read counts matrix of markers, one column for each cell.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
counts_file <- system.file("extdata", "iasva_counts_test.Rds",
 package = "iasva")
counts <- readRDS(counts_file)
anns_file <- system.file("extdata", "iasva_anns_test.Rds",
 package = "iasva")
 anns <- readRDS(anns_file)
Geo_Lib_Size <- colSums(log(counts + 1))
Patient_ID <- anns$Patient_ID
mod <- model.matrix(~Patient_ID + Geo_Lib_Size)
summ_exp <- SummarizedExperiment::SummarizedExperiment(assays = counts)
iasva.res <- iasva(summ_exp, mod[, -1], num.sv = 5, permute = FALSE)
markers <- find_markers(summ_exp, iasva.res$sv)

UcarLab/IA-SVA documentation built on Sept. 3, 2021, 1:38 p.m.