Description Usage Arguments Value Examples
study_R2() studies how different R2 thresholds is changing: 1) number of marker genes; 2) clustering quality (assuming number of clusters is known). It generated diagnostic plots that shows how selected genes and clustering quality changes as a function of R2 threshold.
1 |
Y |
A SummarizedExperiment or SingleCellExperiment class containing read counts where rows represent genes and columns represent samples. |
iasva.sv |
matrix of estimated surrogate variables, one column for each surrogate variable. |
selected.svs |
list of SVs that are selected for the analyses. Default is SV2 |
no.clusters |
No of clusters to be used in the analyses. Default is 2. |
verbose |
If verbose = TRUE, the function outputs detailed messages. |
a summary plot that represents silhoutte index and marker gene counts as a function of R2 and corresponding matrices.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | counts_file <- system.file("extdata", "iasva_counts_test.Rds",
package = "iasva")
counts <- readRDS(counts_file)
anns_file <- system.file("extdata", "iasva_anns_test.Rds",
package = "iasva")
anns <- readRDS(anns_file)
Geo_Lib_Size <- colSums(log(counts + 1))
Patient_ID <- anns$Patient_ID
mod <- model.matrix(~Patient_ID + Geo_Lib_Size)
summ_exp <- SummarizedExperiment::SummarizedExperiment(assays = counts)
iasva.res<- iasva(summ_exp, mod[, -1],verbose = FALSE,
permute = FALSE, num.sv = 5)
iasva.sv <- iasva.res$sv
study_res <- study_R2(summ_exp, iasva.sv)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.