PeakSeuratFromTransfer | R Documentation |
Creates a new peak Seurat object, importing information on clustering and dimensionality reduction, such as t-SNE and UMAP coordinates, from a Seurat object that has been processed at the gene level.
PeakSeuratFromTransfer(
peak.data,
genes.seurat,
annot.info,
project.name = "PolyA",
min.cells = 10,
min.peaks = 200,
norm.scale.factor = 10000,
filter.gene.mismatch = TRUE
)
peak.data |
matrix of peak counts |
genes.seurat |
a Seurat object |
annot.info |
peak annotation information |
project.name |
project name passed to the Seurat object creation |
min.cells |
minimum number of cells for retaining a peak |
min.peaks |
minimum number of peaks for retaining a cell |
norm.scale.factor |
scale factor for Seurat NormalizeData function |
filter.gene.mismatch |
whether to filter out peaks with ambiguous gene mappings |
a new peak-level Seurat object
## Load example data for two peaks from the Cxcl12 gene
extdata_path <- system.file("extdata",package = "Sierra")
load(paste0(extdata_path, "/Cxcl12_example.RData"))
load(paste0(extdata_path, "/TIP_cell_info.RData"))
## Create an seurat object holding the peak data
peaks.seurat <- NewPeakSeurat(peak.data = peak.counts,
annot.info = peak.annotations,
cell.idents = tip.populations,
tsne.coords = tip.tsne.coordinates,
min.cells = 0, min.peaks = 0)
##
peaks.seurat.transfer <- PeakSeuratFromTransfer(peak.data = peak.counts,
genes.seurat = peaks.seurat,
annot.info = peak.annotations)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.