Description Usage Arguments Value Author(s) References See Also Examples
Using the method of Wickramasuriya et al. (2015), this function combines the
forecasts at all levels of a hierarchical or grouped time series. The
forecast.gts calls this function when the MinT method
is selected.
| 1 2 | 
| fcasts | Matrix of forecasts for all levels of a hierarchical or grouped time series. Each row represents one forecast horizon and each column represents one time series of aggregated or disaggregated forecasts. | 
| nodes | If the object class is hts, a list contains the number of child nodes referring to hts. | 
| groups | If the object is gts, a gmatrix is required, which is the same as groups in the function gts. | 
| residual | Matrix of insample residuals for all the aggregated and
disaggregated time series. The columns must be in the same order as
 | 
| covariance | Type of the covariance matrix to be used. Shrinking towards a diagonal unequal variances ("shr") or sample covariance matrix ("sam"). | 
| algorithms | Algorithm used to compute inverse of the matrices. | 
| keep | Return a gts object or the reconciled forecasts at the bottom level. | 
Return the reconciled gts object or forecasts at the bottom
level.
Shanika L Wickramasuriya
Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2015). Forecasting hierarchical and grouped time series through trace minimization. Working paper 15/15, Department of Econometrics & Business Statistics, Monash University. http://robjhyndman.com/working-papers/mint/
Hyndman, R. J., Lee, A., & Wang, E. (2015). Fast computation of reconciled forecasts for hierarchical and grouped time series. Computational Statistics and Data Analysis, 97, 16–32. http://robjhyndman.com/papers/hgts/
hts, gts,
forecast.gts, combinef
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | # hts example
## Not run: h <- 12 
ally <- aggts(htseg1)
n <- nrow(ally)
p <- ncol(ally)
allf <- matrix(NA, nrow = h, ncol = p)
res <- matrix(NA, nrow = n, ncol = p)
for(i in 1:p)
{
  fit <- auto.arima(ally[, i])
  allf[, i] <- forecast(fit, h = h)$mean
  res[, i] <- na.omit(ally[, i] - fitted(fit))
}
allf <- ts(allf, start = 51)
y.f <- MinT(allf, get_nodes(htseg1), residual = res, covariance = "shr", 
  keep = "gts", algorithms = "lu")
plot(y.f)
y.f_cg <- MinT(allf, get_nodes(htseg1), residual = res, covariance = "shr", 
  keep = "all", algorithms = "cg")
## End(Not run)
  
# gts example
## Not run: abc <- ts(5 + matrix(sort(rnorm(200)), ncol = 4, nrow = 50))
g <- rbind(c(1,1,2,2), c(1,2,1,2))
y <- gts(abc, groups = g)
h <- 12
ally <- aggts(y)
n <- nrow(ally)
p <- ncol(ally)
allf <- matrix(NA,nrow = h,ncol = ncol(ally))
res <- matrix(NA, nrow = n, ncol = p)
for(i in 1:p)
{
  fit <- auto.arima(ally[, i])
  allf[, i] <- forecast(fit, h = h)$mean
  res[, i] <- na.omit(ally[, i] - fitted(fit))
}
allf <- ts(allf, start = 51)
y.f <- MinT(allf, groups = get_groups(y), residual = res, covariance = "shr", 
  keep = "gts", algorithms = "lu")
plot(y.f)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.