pairedCVLDT: Paired comparisons on data.tables

Description Usage Arguments Value References Examples

Description

Calculates paired comparisons for a factor on a data.table

Usage

1
2
pairedCVLDT(dataT, facF, otherF = NULL, aggF = NULL, DV, subF,
  aovv = NULL, tDec = 2, pDec = 3, pCut = 0.001, dDec = 3)

Arguments

dataT

The data table

facF

The name of the column containing the factor on which the comparisons are operated.

otherF

Any other factors in the ANOVA design. Useful for simple effects. Vector of column names or comma separated string of column names.

aggF

Factors to aggregate on. Useful when decomposing main effects. Vector of column names or comma separated string of column names.

DV

Name of the column containing the dependant variable.

subF

Name of the column containing the subject code.

aovv

(optional) aov object

tDec

Number of decimals for the t statistic

pDec

Number of decimals for the p value(s)

pCut

Cutting point for the p value

dDec

Number of decimals for Cohen's d

Value

Augmented data.table with the means, t tests and effect sizes.

References

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4.

Examples

1
2
3
4
5
6
7
8
data("donn_ag",package="muCoVL")
dataT<-donn_ag
facF<-"Trial_Block"
otherF<-"Group,dist"
aggF<-"dur"
DV<-"relE"
subF<-"sub"
pairedCVLDT(dataT,facF,otherF,aggF,DV,subF)

VinLaflamme/muCoVL documentation built on May 7, 2019, 7:14 p.m.