##################################################
# Testing code #
##################################################
# Model: CRS_markov_2
# Parameters: c(p_Mets, p_DieMets)
# Targets: c(Survival, PropSick)
## Load the calibR package:
devtools::load_all()
#### Saving path:----
# path = "../../2. Confirmation Review/CR_data/"
# case_study_dir <- "Case_study_1/"
# chapter_dir <- "Chap_3/"
# image_dir <- "images/"
# data_dir <- "data/"
# image_saving_path <- glue::glue("{path}{chapter_dir}{case_study_dir}{image_dir}")
# data_saving_path <- glue::glue("{path}{chapter_dir}{case_study_dir}{data_dir}")
#### Case study lists:----
seed_no <- 1
set.seed(seed = seed_no)
parameters_list <- calibR::CR_CRS_data_2t$l_params
targets_list <- calibR::CR_CRS_data_2t$l_targets
interventions_list <- calibR::CR_CRS_data_2t$l_intervs
gof_measure <- c("LLK", "SSE")
sample_method <- "RGS"
sampling_methods <- c("RGS", "FGS", "LHS")
directed_methods <- c("NM", "BFGS", "SANN")
bayesian_methods <- c("SIR", "IMIS", "MCMC")
#### Initiate CalibR R6 object:----
CR_CRS_2P2T = calibR_R6$
new(
.model = CRS_markov_2,
.params = parameters_list,
.targets = targets_list,
.intervs = interventions_list,
.args = NULL,
.transform = FALSE)
#### Generate samples using Random Grid Search:----
set.seed(seed = seed_no)
CR_CRS_2P2T$
sampleR(
.n_samples = 1e2,
.sampling_method = sampling_methods)
#### Parameter exploration calibration methods:----
##### Unguided searching methods:----
set.seed(seed = seed_no)
CR_CRS_2P2T$
calibrateR_random(
.optim = FALSE,
.maximise = TRUE,
.weighted = TRUE,
.sample_method = sampling_methods,
.calibration_method = gof_measure)
##### Guided searching methods:----
set.seed(seed = seed_no)
CR_CRS_2P2T$
calibrateR_directed(
.gof = gof_measure,
.n_samples = 1e1,
.calibration_method = directed_methods,
.sample_method = sample_method,
.max_iterations = 1e2,
temp = 1,
trace = FALSE)
#### Bayesian methods:----
set.seed(seed = seed_no)
CR_CRS_2P2T$
calibrateR_bayesian(
.b_method = bayesian_methods,
.n_resample = 1e2,
.IMIS_iterations = 200,
.IMIS_sample = 1e2,
.MCMC_burnIn = 1e3,
.MCMC_samples = 4e3,
.MCMC_thin = 30,
.MCMC_rerun = TRUE,
.diag_ = FALSE)
#### Sample PSA values:----
set.seed(seed = seed_no)
CR_CRS_2P2T$
sample_PSA_values(
.calibration_methods = c("Random", "Directed", "Bayesian"),
.PSA_samples = 1e2)
#### Run PSA:----
CR_CRS_2P2T$run_PSA(
.PSA_unCalib_values_ = NULL)
#### Generate PSA tables:----
CR_CRS_2P2T$draw_PSA_summary_tables(
.save_ = TRUE)
#### Plots:----
##### Plot fitness function:----
###### Full view plots:----
set.seed(seed = seed_no)
CR_CRS_2P2T$draw_GOF_measure(
.blank_contour_ = FALSE,
.true_points_ = TRUE,
.coloring_ = "none",
.legend_ = FALSE,
.greys_ = TRUE,
.scale_ = NULL,
.gof_ = gof_measure,
.save_ = TRUE)
###### Zoomed view plots:----
set.seed(seed = seed_no)
CR_CRS_2P2T$draw_GOF_measure(
.blank_contour_ = FALSE,
.true_points_ = TRUE,
.coloring_ = "none",
.legend_ = FALSE,
.greys_ = TRUE,
.scale_ = NULL,
.zoom_ = TRUE,
.gof_ = gof_measure,
.save_ = TRUE)
##### Plot targets:----
CR_CRS_2P2T$draw_targets_plots(
.sim_targets_ = TRUE,
.save_ = TRUE)
##### Prior posterior plot:----
CR_CRS_2P2T$draw_distributions_plots(
.save_ = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.