dsps_predict | R Documentation |
Predicted event time based on DSP method.
dsps_predict(fit, newdata)
fit |
is the return object from function |
newdata |
a dataframe in which to look for time-dependent covariates with which to predict.
The last two columns, in order, are time ( |
a dataframe with predicted event time
## Example 1 - With training data splitting set.seed(1236) dat <- sim_data(n=100, er=0.6) # Split the data by 7/3 subject_list <- unique(dat$Z$subjectid) train_id <- sample(subject_list, round(length(subject_list)*0.7)) test_id <- subject_list[!subject_list %in% train_id] # Data for training, keep only at risk data points dat_train <- dat$Z %>% filter(at_risk == 1) %>% filter(subjectid %in% train_id) %>% select(-at_risk) fit <- dsp_fit(dat_train, C=2^2, kernel="semi_linear") # Data for testing newdata <- dat$Z %>% filter(subjectid %in% test_id) %>% select(-at_risk, -event) # Making prediction predict.dsp <- dsp_predict(fit, newdata = newdata) ## Example 2 - Make event time prediction for large testing data set.seed(1236) dat <- sim_data(n=100, er=0.6) dat_train <- dat$Z %>% filter(at_risk == 1) %>% select(-at_risk) fit <- dsp_fit(dat_train, C=2^2, kernel="semi_linear") dat_test <- sim_data(n=1000, er=1, time_points=fit$train_dat$unq_t_obs) predict.dsp <- dsp_predict(fit, select(dat_test$Z, -at_risk, -event))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.