Description Usage Arguments Examples
sparse_to_na
removes sparse samples in the data.
1 | sparse_to_na(pupil, time, gap_criterion = 40, cluster_criterion = 50)
|
pupil |
A numeric vector of pupil size measurements. |
time |
A vector containing the timestamps associated with the pupil size measurements. |
gap_criterion |
A numeric value specifying the gap duration. Clusters that follow a gap of this size or larger will be removed. |
cluster_criterion |
A numeric value specifying the cluster duration. Clusters smaller than this this value will be removed. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | # Load the "dplyr", "tidyr", and "ggplot2" packages:
library(dplyr)
library(tidyr)
library(ggplot2)
# Example 1: Artificial data
# Create some artificial data:
data <- tibble(
time = 1:8,
pupil_left = c(3.11, 3.13, NA, NA, 3.24, NA, NA, 3.12),
pupil_right = c(2.92, 2.95, NA, NA, 3.06, NA, NA, 2.95)
)
data
# Remove the cluster in the left eye:
mutate(data,
pupil_left = sparse_to_na(pupil_left, time, gap_criterion = 2,
cluster_criterion = 1)
)
# Example 2: Realistic data
sparse
# Remove a sparse cluster of the left eye:
sparse <- mutate(sparse,
pupil_left_new = sparse_to_na(pupil_left, timestamp, gap_criterion = 10,
cluster_criterion = 5)
)
# Restructure the data and plot the results to compare the pupil measurements
# before and after padding the gaps:
sparse %>%
rename(pupil_left_old = pupil_left) %>%
pivot_longer(
cols = c(pupil_left_old, pupil_left_new),
names_to = "status",
names_pattern = "(old|new)",
values_to = "pupil_size"
) %>%
ggplot(aes(x = timestamp, y = pupil_size, color = status)) +
geom_point()
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.