R/clusterGene.R

Defines functions clusterGene

#' Cluster genes based on their temporal patterns  of gene expression (constant time test) or the temporal patterns of gene expression group difference (sample covariate test).
#'
#' This function is used to cluster genes based on their temporal patterns  of gene expression (constant time test) or the temporal patterns of gene expression group difference (sample covariate test).
#'
#' @export
#' @import ggplot2 RColorBrewer splines gridExtra viridis
#' @return a plot
#' @author Wenpin Hou <whou10@jhu.edu>
#' @export
#' @param testobj object returned from lamian_test().
#' @param gene a character vector of gene names. It can be of length 1 or > 1.
#' @param type A character denoting the population fit is on "Time" or "Variable".  Default is "Time". Case insensitive. 
#' @param k.auto logical. If FALSE (default), users need to specify k as the number of clusters. If TRUE, k will be automatically determined by elbow's method.
#' @param k a numeric number. The number of clusters. Only useful when k.auto = FALSE.
#' @param method the clustering method. Options include 'kmeans'(default), 'hierarchical', 'louvain', and 'GMM'.  "kmeans" (default) for k-means clustering,  "hierarchical" for hierarchical clustering, "louvain" for Louvain clustering, and "GMM" for Model-based clustering. Note: "GMM" is very slow. 
#' @param scale.difference logical. If FALSE, then do not standarize the group difference, but only scale by the maximum value of the group difference absolute values. If TRUE, then standardize the group difference before doing the clustering.
#' @examples
#' data(mantestobj)
#' clu = clusterGene(testobj = mantestobj, k = 4)
clusterGene <- function(testobj, gene, type = 'variable', k.auto = FALSE, k=5, method = 'kmeans', scale.difference = F, seed = 12345){
  if (toupper(type) == 'TIME'){
    clu <- cluster_gene(testobj = testobj, 
                        gene = gene,
                        k = k,
                        type = type,
                        method = method,
                        scale.difference = scale.difference,
                        seed = seed)
  } else if (toupper(type) == 'VARIABLE'){
    if ('XDEType' %in% names(testobj)){
      XDEType <- testobj$XDEType
    } else {
      XDEType <- getXDEType(testobj)
    }
    
    clu <- cluster_gene(testobj, gene = names(XDEType)[!XDEType %in% c('nonXDE', 'meanSig')], type = 'variable', k=k, scale.difference = scale.difference, method = method, k.auto = k.auto, seed = seed)
    design = testobj$design
    cellanno = testobj$cellanno
    meandiff <- sapply(c(0,1), function(i){
      as <- rownames(design[design[,2]==i, ])
      if ('expr' %in% names(testobj)){
        rowMeans(testobj$expr[names(XDEType)[XDEType == 'meanSig'], cellanno[cellanno[,2] %in% as,1], drop = FALSE])
      } else {
        rowMeans(testobj$expr.ori[names(XDEType)[XDEType == 'meanSig'], cellanno[cellanno[,2] %in% as,1], drop = FALSE])
      }
    }, simplify = FALSE)
    meandiff = do.call(cbind, meandiff)
    large0 <- rownames(meandiff)[meandiff[,1] >= meandiff[,2]]
    large1 <- rownames(meandiff)[meandiff[,1] < meandiff[,2]]
    
    if (length(large1) > 0){
      clu2 <- rep(max(clu)+1, length(large1))
      names(clu2) <- large1
      clu3 <- rep(max(clu)+2, length(large0))
      names(clu3) <- large0
      clu = c(clu, clu2, clu3)  
    } else {
      clu3 <- rep(max(clu)+1, length(large0))
      names(clu3) <- large0
      clu = c(clu, clu3)  
    }  
  }
  clu <- clu[gene]
  return(clu)
}
Winnie09/Lamian documentation built on Nov. 19, 2024, 7:04 p.m.