#' Clean followup data
#'
#' @description Cleans and un-nests followup data which is returned from
#' [`get_followups()`]
#'
#' @param followups A `tibble` with events data. Followup data is returned by
#' [`get_followups()`].
#' @param contacts_address_history_clean A `tibble` with cleaned address
#' history data from contacts. Contacts data is returned by [`get_contacts()`]
#' and cleaned by [`clean_contact_address_history()`].
#'
#' @return A `tibble` with cleaned followup data.
#' @export
#'
#' @examples
#' \dontrun{
#' url <- "https://MyGoDataServer.com/"
#' username <- "myemail@email.com"
#' password <- "mypassword"
#' outbreak_id <- "3b5554d7-2c19-41d0-b9af-475ad25a382b"
#'
#' followups <- get_followups(
#' url = url,
#' username = username,
#' password = password,
#' outbreak_id = outbreak_id
#' )
#'
#' contacts <- get_contacts(
#' url = url,
#' username = username,
#' password = password,
#' outbreak_id = outbreak_id
#' )
#'
#' locations <- get_locations(
#' url = url,
#' username = username,
#' password = password
#' )
#'
#' locations_clean <- clean_locations(locations = locations)
#'
#' language_tokens <- get_language_tokens(
#' url = url,
#' username = username,
#' password = password,
#' language = "english_us"
#' )
#'
#' contacts_address_history_clean <- clean_contact_address_history(
#' contacts = contacts,
#' locations_clean = locations_clean,
#' language_tokens = language_tokens
#' )
#'
#' followups_clean <- clean_followups(
#' followups = followups,
#' contacts_address_history_clean = contacts_address_history_clean,
#' language_tokens = language_tokens
#' )
#' }
clean_followups <- function(followups,
contacts_address_history_clean,
language_tokens) {
# Remove all deleted records
followups_clean <- dplyr::filter(
.data = followups,
.data$deleted == FALSE | is.na(.data$deleted)
)
# Remove all nested fields, otherwise problems with exporting to excel
followups_clean <- dplyr::select_if(
.tbl = followups_clean,
.predicate = purrr::negate(is.list)
)
# take out all that are not core variables, otherwise diff versions and
# problems exporting to excel
followups_clean <- dplyr::select(
.data = followups_clean,
-dplyr::contains("questionnaireAnswers")
)
# standardize column name syntax
followups_clean <- janitor::clean_names(dat = followups_clean)
# label timestamps as datetime
followups_clean <- dplyr::rename(
.data = followups_clean,
datetime_updated_at = "updated_at",
datetime_created_at = "created_at"
)
# clean up all character fields
followups_clean <- dplyr::mutate(
.data = followups_clean,
dplyr::across(dplyr::where(is.character), dplyr::na_if, "")
)
# clean date formats (TODO: edit this so that we can see time stamps)
followups_clean <- dplyr::mutate_at(
.tbl = followups_clean,
dplyr::vars(date), list(~ as.Date(substr(., 1, 10)))
)
followups_clean <- dplyr::mutate(
.data = followups_clean,
datetime_updated_at = as.POSIXct(datetime_updated_at, format = "%Y-%m-%dT%H:%M")
)
followups_clean <- dplyr::mutate(
.data = followups_clean,
datetime_created_at = as.POSIXct(datetime_created_at, format = "%Y-%m-%dT%H:%M")
)
# translate responses of categorical vars so easier to read
followups_clean <- translate_categories(
data = followups_clean,
language_tokens = language_tokens
)
followups_clean <- dplyr::rename(
.data = followups_clean,
followup_status = "status_id"
)
contacts_address_history_clean <- dplyr::filter(
.data = contacts_address_history_clean,
addresses_typeid == "Current address"
)
followups_clean <- dplyr::left_join(
x = followups_clean,
y = contacts_address_history_clean,
by = "id"
)
# organize order of vars, only bring in what we need, take away confusing vars
followups_clean <- dplyr::select(
.data = followups_clean,
"id", # identifier
"contact_id", # identifier
"contact_visual_id", # identifier
"date", # dates
followup_number = "index", # FU status
"followup_status", # FU status
"targeted", # FU status
"responsible_user_id", # assigned contact tracer
"team_id", # assigned contact tracer
dplyr::matches("^admin_.*name$"), # address
"lat", # address
"long", # address
"address", # address
"postal_code", # address
"city", # address
"telephone", # address
"email", # address
location_id = "addresses_locationid", # uuid in case need later for joining of whatever sort.
"created_by", # record modification
"datetime_created_at", # record modification
"updated_by", # record modification
"datetime_updated_at" # record modification
)
return(followups_clean)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.