#' Cleans relationship data
#'
#' @description Cleans and un-nests relationship data. Relationship data is
#' returned by [`get_relationships()`].
#'
#' @param relationships A `tibble` of relationship data. Relationship data is
#' returned by [`get_relationships()`].
#'
#' @return A `tibble` with clean relationship data.
#' @export
#'
#' @examples
#' \dontrun{
#' url <- "https://MyGoDataServer.com/"
#' username <- "myemail@email.com"
#' password <- "mypassword"
#' outbreak_id <- "3b5554d7-2c19-41d0-b9af-475ad25a382b"
#'
#' relationships <- get_relationships(
#' url = url,
#' username = username,
#' password = password,
#' outbreak_id = outbreak_id
#' )
#'
#' language_tokens <- get_language_tokens(
#' url = url,
#' username = username,
#' password = password,
#' language = "english_us"
#' )
#'
#' clean_relationships <- clean_relationships(
#' relationships,
#' language_tokens = language_tokens
#' )
#' }
clean_relationships <- function(relationships,
language_tokens) {
# Remove all deleted records
clean_relationships <- dplyr::filter(
.data = relationships,
.data$deleted == FALSE | is.na(.data$deleted)
)
# Remove all nested fields, otherwise problems with exporting to excel
clean_relationships <- dplyr::select_if(
.tbl = clean_relationships,
purrr::negate(is.list)
)
# standardize column name syntax
clean_relationships <- janitor::clean_names(clean_relationships)
# label timestamps as datetime
clean_relationships <- dplyr::rename(
.data = clean_relationships,
datetime_updated_at = "updated_at",
datetime_created_at = "created_at"
)
#clean up all character fields
clean_relationships <- dplyr::mutate(
.data = clean_relationships,
dplyr::across(dplyr::where(is.character), na_if, "")
)
# clean date formats (TODO: edit this so that we can see time stamps)
clean_relationships <- dplyr::mutate(
.data = clean_relationships,
dplyr::across(
dplyr::starts_with("date_"), list(~ as.Date(substr(., 1, 10)))
)
)
clean_relationships <- dplyr::mutate(
.data = clean_relationships,
datetime_updated_at = as.POSIXct(
datetime_updated_at,
format = "%Y-%m-%dT%H:%M"
)
)
clean_relationships <- dplyr::mutate(
.data = clean_relationships,
datetime_created_at = as.POSIXct(
datetime_created_at,
format = "%Y-%m-%dT%H:%M"
)
)
# translate responses of categorical vars so easier to read
clean_relationships <- translate_categories(
data = clean_relationships,
language_tokens = language_tokens
)
# organize order of vars, only bring in what we need, take away confusing vars
clean_relationships <- dplyr::select(
.data = clean_relationships,
"id", #id
"source_person_id", #id
"source_person_visual_id", #id
"target_person_id", #id
"target_person_visual_id", #id
"source_person_type", #id
"target_person_type", #id
"created_by", # record modification
"datetime_created_at", # record modification
"updated_by", # record modification
"datetime_updated_at" # record modification
)
return(clean_relationships)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.