README.md

MiATDS

Type: Package

Title: A powerful adaptive microbiome-based association test for microbial association signals with diverse sparsity levels Version: 1.0

Author: Xiaoyun Huang

Maintainer: Xiaoyun Huang huangxiaoyun@mails.ccnu.edu.cn

Imports: phyloseq, cluster, compositions, permute, vegan, ape, aSPU, MiSPU, devtools, MiHC

Description: An adaptive microbiome-based association test for detecting microbial association signals with diverse sparsity levels

License: GPL-2

Encoding: UTF-8

LazyData: true

URL: https://github.com/XiaoyunHuang33/MiATDS

Introduction

MiATDS, an adaptive microbiome-based association test combining the microbiome higher criticism analysis (MiHC) and adaptive weighted sum of powered score tests (aWSPU), has a good performance for detecting microbial association signals with diverse sparsity levels.

Installation

phyloseq:

BiocManager::install("phyloseq")

cluster:

install.packages("cluster")

compositions:

install.packages("compositions")

permute:

install.packages("permute")

vegan:

install.packages("vegan")

ape:

install.packages("ape")

aSPU:

install.packages("aSPU")

MiSPU:

install.packages("MiSPU")

devtools:

install.packages("devtools")

MiHC:

devtools::install_github("hk1785/MiHC", force=T)

You may install MiATDS from GitHub using the following code:

devtools::install_github("XiaoyunHuang33/MiATDS", force=T)

Description

The function MiATDS tests association between microbiome and a host phenotype. The association signals of association test can be at diverse sparsity levels. And host phenotype must be continuous or binary.

Usage

MiATDS(y, otu.tab, cov=NULL, tree=NULL, model = c("gaussian", "binomial"), pow=c(1:5), comp=FALSE, CLR=FALSE, opt.ncl=30, n.perm=5000)

Arguments

Values

$pd.rank - The ranking for probability degree.

$awSPU.pvs - The p-value for the wSPU test and awSPU test.

$aWSPU.pvs - The p-value for the WSPU test and aWSPU test.

$omnibus.pvs - The p-value for the MiATDS test.

Example

Import requisite R packages:

library(cluster)
library(permute)
library(phyloseq)
library(MiHC)
library(MiATDS)  

Import example microbiome data:

data(obesity_data)
otu.tab <- obesity_data@otu_table
tree <- obesity_data@phy_tree
y<- obesity_data@sam_data$label
cov <- as.matrix(obesity_data@sam_data$x1)

Fit GEEMiHC:

set.seed(123)
out <- MiATDS(y, otu.tab, cov=cov, tree, model = "binomial")
out

References

Other Resources

OTUs_simulated function

Description

We generate the OTUs count table simulated based on the Dirichlet-multinomial model according to real data.

Usage

OTUs_simulated(data, nSam, nOTU, n_repeat, mu, size)

Arguments

Values

$OTU_simulated - OTU counts table simulated based on real data.

Example

data("throat.otu.tab", package ="MiSPU")
otu.tab <- round(OTUs_simulated(data=throat.otu.tab, nSam=100, nOTU=100, n_repeat=10, mu=1000, size=25)$OTU_simulated)

References

The datasets of case applications

(1) Association analysis between gut microbiome and obesity:

the information of processed data: data(obesity_data).

(2) Association analysis between gut microbiome and colorectal cancer:

the information of processed data: data(crc_data).

(3) Association analysis between gut microbiome and autism:

the information of processed data: data(autism_data).

References

Statement

Our code mainly refers to R packages, MiHC, OMiAT, and MiSPU, where MiATDS function refers to MiHC and OMiAT, the generation of OTU table (i.e., OTUs_simulated function) refers to MiSPU.

Citation

If you use this code for you research, please cite our paper.

@article{
title={A powerful adaptive microbiome-based association test for microbial association signals with diverse sparsity levels},
author={Han Sun, Xiaoyun Huang, Lingling Fu, Ban Huo, Tingting He, Xingpeng Jiang},
journal={Journal of Genetics and Genomics},
volume={48(9)},
pages={851–859},
year={2021},
url={https://linkinghub.elsevier.com/retrieve/pii/S1673852721002599},
doi={10.1016/j.jgg.2021.08.002}
}


XiaoyunHuang33/MiATDS documentation built on Dec. 18, 2021, 7:23 p.m.