Type: Package
Title: A powerful adaptive microbiome-based association test for microbial association signals with diverse sparsity levels Version: 1.0
Author: Xiaoyun Huang
Maintainer: Xiaoyun Huang huangxiaoyun@mails.ccnu.edu.cn
Imports: phyloseq, cluster, compositions, permute, vegan, ape, aSPU, MiSPU, devtools, MiHC
Description: An adaptive microbiome-based association test for detecting microbial association signals with diverse sparsity levels
License: GPL-2
Encoding: UTF-8
LazyData: true
URL: https://github.com/XiaoyunHuang33/MiATDS
MiATDS
, an adaptive microbiome-based association test combining the microbiome higher criticism analysis (MiHC) and adaptive weighted sum of powered score tests (aWSPU), has a good performance for detecting microbial association signals with diverse sparsity levels.
phyloseq:
BiocManager::install("phyloseq")
cluster:
install.packages("cluster")
compositions:
install.packages("compositions")
permute:
install.packages("permute")
vegan:
install.packages("vegan")
ape:
install.packages("ape")
aSPU:
install.packages("aSPU")
MiSPU:
install.packages("MiSPU")
devtools:
install.packages("devtools")
MiHC:
devtools::install_github("hk1785/MiHC", force=T)
You may install MiATDS
from GitHub using the following code:
devtools::install_github("XiaoyunHuang33/MiATDS", force=T)
The function MiATDS
tests association between microbiome and a host phenotype. The association signals of association test can be at diverse sparsity levels. And host phenotype must be continuous or binary.
MiATDS(y, otu.tab, cov=NULL, tree=NULL, model = c("gaussian", "binomial"), pow=c(1:5), comp=FALSE, CLR=FALSE, opt.ncl=30, n.perm=5000)
$pd.rank - The ranking for probability degree.
$awSPU.pvs - The p-value for the wSPU test and awSPU test.
$aWSPU.pvs - The p-value for the WSPU test and aWSPU test.
$omnibus.pvs - The p-value for the MiATDS test.
Import requisite R packages:
library(cluster)
library(permute)
library(phyloseq)
library(MiHC)
library(MiATDS)
Import example microbiome data:
data(obesity_data)
otu.tab <- obesity_data@otu_table
tree <- obesity_data@phy_tree
y<- obesity_data@sam_data$label
cov <- as.matrix(obesity_data@sam_data$x1)
Fit GEEMiHC:
set.seed(123)
out <- MiATDS(y, otu.tab, cov=cov, tree, model = "binomial")
out
Pan, W., Kim, J., Zhang, Y., Shen, X., Wei, P., 2014. A powerful and adaptive association test for rare variants. Genetics 197, 1081-1095.
Koh, H., Blaser, M.J., Li, H., 2017. A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping. Microbiome 5, 45.
Koh, H., Zhao, N., 2020. A powerful microbial group association test based on the higher criticism analysis for sparse microbial association signals. Microbiome 8, 63.
We generate the OTUs count table simulated based on the Dirichlet-multinomial model according to real data.
OTUs_simulated(data, nSam, nOTU, n_repeat, mu, size)
data - real data.
nSam - Sample size.
nOTU - The number of OTUs.
n_repeat - The number of repeat.
mu - The mean of the negative binomial distribution.
size - The size of the negative binomial distribution.
$OTU_simulated - OTU counts table simulated based on real data.
data("throat.otu.tab", package ="MiSPU")
otu.tab <- round(OTUs_simulated(data=throat.otu.tab, nSam=100, nOTU=100, n_repeat=10, mu=1000, size=25)$OTU_simulated)
Wu, C., Chen, J., Kim, J., Pan,W., 2016. An adaptive association test for microbiome data. Genome Med. 8, 56.
La Rosa, P.S., Brooks, J.P., Deych, E., Boone, E.L., Edwards, D.J., Wang, Q., Sodergren, E., Weinstock, G., Shannon, W.D., 2012. Hypothesis Testing and Power Calculations for Taxonomic-Based Human Microbiome Data. PLoS ONE 7, e52078.
(1) Association analysis between gut microbiome and obesity:
the information of processed data: data(obesity_data)
.
(2) Association analysis between gut microbiome and colorectal cancer:
the information of processed data: data(crc_data)
.
(3) Association analysis between gut microbiome and autism:
the information of processed data: data(autism_data)
.
Escobar, J.S., Klotz, B., Valdes, B.E., Agudelo, G.M., 2014. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 14, 311.
Wang, T., Cai, G., Qiu, Y., Fei, N., Zhang, M., Pang, X., Jia, W., Cai, S., Zhao, L., 2012. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320-329.
Kang, D.-W., Park, J.G., Ilhan, Z.E., Wallstrom, G., LaBaer, J., Adams, J.B., Krajmalnik-Brown, R., 2013. Reduced incidence of Prevotella and Other fermenters in intestinal microflora of autistic children. PLoS ONE 8, e68322.
Our code mainly refers to R packages, MiHC, OMiAT, and MiSPU, where MiATDS function refers to MiHC and OMiAT, the generation of OTU table (i.e., OTUs_simulated function) refers to MiSPU.
If you use this code for you research, please cite our paper.
@article{
title={A powerful adaptive microbiome-based association test for microbial association signals with diverse sparsity levels},
author={Han Sun, Xiaoyun Huang, Lingling Fu, Ban Huo, Tingting He, Xingpeng Jiang},
journal={Journal of Genetics and Genomics},
volume={48(9)},
pages={851–859},
year={2021},
url={https://linkinghub.elsevier.com/retrieve/pii/S1673852721002599},
doi={10.1016/j.jgg.2021.08.002}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.