Description Usage Arguments Value Examples
This function "MiATDS" is an adaptive microbiome-based association test integrating the microbiome higher criticism analysis (MiHC) and adaptive weighted sum of powered score tests (aWSPU). MiATDS has a good performance for detecting microbial association signals with diverse sparsity levels.
1 |
y |
Host phenotype of interest (Continuous or binary). |
otu.tab |
A matrix of OTU count table. |
tree |
A rooted phylogenetic tree. |
cov |
Covariate (e.g., age, gender). |
model |
"gaussian" for Gaussian outcomes, "binomial" for Binomial outcomes. |
comp |
An indicator if the OTU table contains absolute abundances or relative abundances. Default is comp=FALSE for absolute abundances. |
CLR |
The centered log-ratio (CLR) transformation. Default is CLR=FALSE for no CLR. transformation. |
opt.ncl |
A upper limit to find the optimal number of clusters. Default is opt.ncl=30. |
n.perm |
A number of permutations. Default is n.perm=5000. |
pd.rank: The ranking for probability degree.
awSPU.pvs: The p-value for the wSPU test and awSPU test.
aWSPU.pvs: The p-value for the WSPU test and aWSPU test.
omnibus.pvs: The p-value for the MiATDS test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # Import requisite R packages
library(cluster)
library(compositions)
library(phyloseq)
library(permute)
library(MiHC)
# Import example microbiome data
load("D:/R_pro/MiATDS/data/obesity_data.rda")
otu.tab <- obesity_data@otu_table
tree <- obesity_data@phy_tree
y<- obesity_data@sam_data$label
cov <- as.matrix(obesity_data@sam_data$x1)
# Fit MiATDS
set.seed(123)
out <- MiATDS(y, cov=cov, otu.tab=otu.tab, tree=tree, model="binomial", n.perm=5000)
out
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.