Description Usage Arguments Author(s) References See Also Examples
Advanced activation layers
| 1 2 3 4 5 6 7 | 
| alpha | float >= 0. Negative slope coefficient in LeakyReLU and scale for the negative factor in ELU. | 
| input_shape | only need when first layer of a model; sets the input shape of the data | 
| theta | float >= 0. Threshold location of activation in ThresholdedReLU. | 
Taylor B. Arnold, taylor.arnold@acm.org
Chollet, Francois. 2015. Keras: Deep Learning library for Theano and TensorFlow.
Other layers: Activation,
ActivityRegularization,
BatchNormalization, Conv,
Dense, Dropout,
Embedding, Flatten,
GaussianNoise, LayerWrapper,
LocallyConnected, Masking,
MaxPooling, Permute,
RNN, RepeatVector,
Reshape, Sequential
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | if(keras_available()) {
  X_train <- matrix(rnorm(100 * 10), nrow = 100)
  Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3)
  
  mod <- Sequential()
  mod$add(Dense(units = 50, input_shape = dim(X_train)[2]))
  mod$add(LeakyReLU(alpha = 0.4))
  mod$add(Dense(units = 50))
  mod$add(ELU(alpha = 0.5))
  mod$add(Dense(units = 50))
  mod$add(ThresholdedReLU(theta = 1.1))
  mod$add(Dense(units = 3))
  mod$add(Activation("softmax"))
  keras_compile(mod,  loss = 'categorical_crossentropy', optimizer = RMSprop())
  
  keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5, verbose = 0)
}
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.