#' Jacod Preaveraging (2009, 2010)
#'
#' Calculate sigma_hat according to the pre-averaging approach Jacod et al. (2009, 2010)
#'
#' @import data.table
#'
#' @param DATA A data.table with structure as provided in the example.
#' @param kn The degree of subsampling during preaveraging. Defaults to 100.
#'
#' @return Returns the variation estimation
#' @export
jacod_preaveraging <- function(DATA,kn = 100){
dz <- DATA[!is.na(log_ret), log_ret]
# Set up constants
gbar2 = 1/12
phibar2 = 1/12
phiprimebar2 = 1
gamma = 2
gammap = 2
gammapp = 2
Aprimegg = c(
3.599999960562231,
1.221424577286807,
0.370635624815616,
0.035039285812380,
0.002315373900701)
Aprimegh = c(
2.725769745686566,
0.589334298318853,
0.122686505762394,
0.007755996403950,
0.000347923390644)
Aprimehh = c(
30.217754077981802,
2.535050327092127,
0.188268743583475,
0.004415379915876,
0.000072391168973)
# Compute the ratio stat
yg = YbarYhat(dz,kn,1)
ybarg <- yg$Ybar
yhatg <- yg$Yhat
vvec_p4_g = Vvec(ybarg,yhatg,4)
vbar_p4_g = vvec_p4_g[1] - 3 * vvec_p4_g[2] + 0.75 * vvec_p4_g[3]
return(vbar_p4_g)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.