# # calculate the difference of stt_table.
#
# #### Please don't run outs_DAISIE below, because the outputs already saved in
# #### "D:/YSPhD_Aca/specmutual/results/outs_DAISIE.RData"
# ## outs_DAISIE <- list()
# ## for (i in 1:7) {
# ## set.seed(i)
# ## message("Running param set: ", i)
# ## out_DAISIE <- DAISIE::DAISIE_sim_cr(
# ## time = 5,
# ## M = 200,
# ## pars = pars_pool[[i]],
# ## replicates = 1000,
# ## divdepmodel = "IW",
# ## plot_sims = FALSE,
# ## verbose = FALSE)
# ## outs_DAISIE[[i]] <- out_DAISIE
# ## }
# ## save(outs_DAISIE, file = "D:/YSPhD_Aca/specmutual/results/outs_DAISIE.RData")
#
# # mutualism_pars_set1 <- list(
# # lac_pars = c(0.2, 0.2),
# # mu_pars = c(0.5, 0.5, 0.0, 0.0),
# # K_pars = c(Inf, Inf, Inf, Inf),
# # gam_pars = c(0.05, 0.05),
# # laa_pars = c(1.0, 1.0, 0.0, 0.0),
# # qgain = 0.0,
# # qloss = 0.0,
# # lambda0 = 0.0,
# # M0 = matrix(
# # sample(c(0, 1), 10000, replace = TRUE),
# # ncol = 100,
# # nrow = 100
# # ),
# # transprob = 1.0
# # )
# #
# # mutualism_pars_set2 <- list(
# # lac_pars = c(0.2, 0.2),
# # mu_pars = c(0.5, 0.5, 0.0, 0.0),
# # K_pars = c(Inf, Inf, Inf, Inf),
# # gam_pars = c(0.1, 0.1),
# # laa_pars = c(1.0, 1.0, 0.0, 0.0),
# # qgain = 0.0,
# # qloss = 0.0,
# # lambda0 = 0.0,
# # M0 = matrix(
# # sample(c(0, 1), 10000, replace = TRUE),
# # ncol = 100,
# # nrow = 100
# # ),
# # transprob = 1.0
# # )
# #
# # mutualism_pars_set3 <- list(
# # lac_pars = c(0.2, 0.2),
# # mu_pars = c(0.5, 0.5, 0.0, 0.0),
# # K_pars = c(100, 100, Inf, Inf),
# # gam_pars = c(0.05, 0.05),
# # laa_pars = c(1.0, 1.0, 0.0, 0.0),
# # qgain = 0.0,
# # qloss = 0.0,
# # lambda0 = 0.0,
# # M0 = matrix(
# # sample(c(0, 1), 10000, replace = TRUE),
# # ncol = 100,
# # nrow = 100
# # ),
# # transprob = 1.0
# # )
# #
# # mutualism_pars_set4 <- list(
# # lac_pars = c(0.4, 0.4),
# # mu_pars = c(0.5, 0.5, 0.0, 0.0),
# # K_pars = c(Inf, Inf, Inf, Inf),
# # gam_pars = c(0.05, 0.05),
# # laa_pars = c(1.0, 1.0, 0.0, 0.0),
# # qgain = 0.0,
# # qloss = 0.0,
# # lambda0 = 0.0,
# # M0 = matrix(
# # sample(c(0, 1), 10000, replace = TRUE),
# # ncol = 100,
# # nrow = 100
# # ),
# # transprob = 1.0
# # )
# #
# # mutualism_pars_set5 <- list(
# # lac_pars = c(0.2, 0.2),
# # mu_pars = c(0.8, 0.8, 0.0, 0.0),
# # K_pars = c(Inf, Inf, Inf, Inf),
# # gam_pars = c(0.05, 0.05),
# # laa_pars = c(1.0, 1.0, 0.0, 0.0),
# # qgain = 0.0,
# # qloss = 0.0,
# # lambda0 = 0.0,
# # M0 = matrix(
# # sample(c(0, 1), 10000, replace = TRUE),
# # ncol = 100,
# # nrow = 100
# # ),
# # transprob = 1.0
# # )
# #
# # mutualism_pars_set6 <- list(
# # lac_pars = c(0.2, 0.2),
# # mu_pars = c(0.5, 0.5, 0.0, 0.0),
# # K_pars = c(Inf, Inf, Inf, Inf),
# # gam_pars = c(0.05, 0.05),
# # laa_pars = c(0.5, 0.5, 0.0, 0.0),
# # qgain = 0.0,
# # qloss = 0.0,
# # lambda0 = 0.0,
# # M0 = matrix(
# # sample(c(0, 1), 10000, replace = TRUE),
# # ncol = 100,
# # nrow = 100
# # ),
# # transprob = 1.0
# # )
# #
# # mutualism_pars_set7 <- list(
# # lac_pars = c(1.2, 1.2),
# # mu_pars = c(0.6, 0.6, 0.0, 0.0),
# # K_pars = c(Inf, Inf, Inf, Inf),
# # gam_pars = c(0.02, 0.02),
# # laa_pars = c(1.2, 1.2, 0.0, 0.0),
# # qgain = 0.0,
# # qloss = 0.0,
# # lambda0 = 0.0,
# # M0 = matrix(
# # sample(c(0, 1), 10000, replace = TRUE),
# # ncol = 100,
# # nrow = 100
# # ),
# # transprob = 1.0
# # )
#
# # load("D:/YSPhD_Aca/specmutual/results/outs_parpool1.RData")
# # load("D:/YSPhD_Aca/specmutual/results/outs_DAISIE.RData")
# out_DAISIE <- outs_DAISIE[[1]]
# island_total <- format_island_mutual_total(island_replicates = outs_parpool,
# total_time = 5,
# sample_freq = 25,
# mutualism_pars = mutualism_pars_set1)
#
# rep <- length(island_total)
# complete_arr_mutual <- array(dim = c(26, 6, rep))
# complete_arr_DAISIE <- array(dim = c(26, 6, rep))
# for (x in 1:rep) {
# #mutualism
# sum_endemics_mutual <- island_total[[x]][[1]]$stt_all[, "nAp"] +
# island_total[[x]][[1]]$stt_all[, "nCp"] +
# island_total[[x]][[1]]$stt_all[, "nAa"] +
# island_total[[x]][[1]]$stt_all[, "nCa"]
# total_mutual <- island_total[[x]][[1]]$stt_all[, "nIp"] +
# island_total[[x]][[1]]$stt_all[, "nAp"] +
# island_total[[x]][[1]]$stt_all[, "nCp"] +
# island_total[[x]][[1]]$stt_all[, "nIa"] +
# island_total[[x]][[1]]$stt_all[, "nAa"] +
# island_total[[x]][[1]]$stt_all[, "nCa"]
# nI_mutual <- island_total[[x]][[1]]$stt_all[, "nIp"] +
# island_total[[x]][[1]]$stt_all[, "nIa"]
# nA_mutual <- island_total[[x]][[1]]$stt_all[, "nAp"] +
# island_total[[x]][[1]]$stt_all[, "nAa"]
# nC_mutual <- island_total[[x]][[1]]$stt_all[, "nCp"] +
# island_total[[x]][[1]]$stt_all[, "nCa"]
# complete_arr_mutual[, , x] <- cbind(island_total[[x]][[1]]$stt_all[, 'Time'],
# nI_mutual,
# nA_mutual,
# nC_mutual,
# sum_endemics_mutual,
# total_mutual)
# #DAISIE
# sum_endemics_DAISIE <- out_DAISIE[[x]][[1]]$stt_all[, "nA"] +
# out_DAISIE[[x]][[1]]$stt_all[, "nC"]
# total_DAISIE <- out_DAISIE[[x]][[1]]$stt_all[, "nI"] +
# out_DAISIE[[x]][[1]]$stt_all[, "nA"] +
# out_DAISIE[[x]][[1]]$stt_all[, "nC"]
# complete_arr_DAISIE[, , x] <- cbind(out_DAISIE[[x]][[1]]$stt_all[, 'Time'],
# out_DAISIE[[x]][[1]]$stt_all[, 'nI'],
# out_DAISIE[[x]][[1]]$stt_all[, 'nA'],
# out_DAISIE[[x]][[1]]$stt_all[, 'nC'],
# sum_endemics_DAISIE,
# total_DAISIE)
# }
# ### Comparation ###
# stt_median_mutual <- apply(complete_arr_mutual, c(1, 2), stats::median)
# stt_average_mutual <- apply(complete_arr_mutual, c(1, 2), mean)
#
# stt_median_DAISIE <- apply(complete_arr_DAISIE, c(1, 2), stats::median)
# stt_average_DAISIE <- apply(complete_arr_DAISIE, c(1, 2), mean)
#
# diff_meadin <- stt_median_DAISIE - stt_median_mutual
# # colMeans(diff_meadin)
# diff_aver <- stt_average_DAISIE - stt_average_mutual
# # colMeans(diff_aver)
#
## plot the difference in terms of median
# par(mfrow = c(1, 5))
# plot(1:26, diff_meadin[, 2], ylim = c(-5, 5), col="black", pch = 16,
# xaxt = "n", xlab ="",
# ylab = "Difference in nI", cex.lab = 1.2, cex.main = 1.2, cex.axis = 1.2)
# plot(1:26, diff_meadin[, 3], ylim = c(-5, 5), col="black", pch = 16,
# xaxt = "n",xlab ="",
# ylab = "Difference in nA", cex.lab = 1.2, cex.main = 1.2, cex.axis = 1.2)
# plot(1:26, diff_meadin[, 4], ylim = c(-5, 5), col="black", pch = 16,
# xaxt = "n",xlab ="",
# ylab = "Difference in nC", cex.lab = 1.2, cex.main = 1.2, cex.axis = 1.2)
# plot(1:26, diff_meadin[, 5], ylim = c(-5, 5), col="black", pch = 16,
# xaxt = "n",xlab ="",
# ylab = "Difference in endemic", cex.lab = 1.2, cex.main = 1.2, cex.axis = 1.2)
# plot(1:26, diff_meadin[, 6], ylim = c(-5, 5), col="black", pch = 16,
# xaxt = "n",xlab ="",
# ylab = "Difference in total", cex.lab = 1.2, cex.main = 1.2, cex.axis = 1.2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.