Description Usage Arguments Value
View source: R/MCMC_sampling.R
learn W from data
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | MCMC_sampling(
dat,
Q,
r_0,
rho,
hyper.W,
prior.theta,
data.para,
depletion.factor,
depletion.factor.wt,
method.wt,
stimulation.value,
stimulation.value.wt,
seed = seed,
ts,
itr
)
|
dat |
feeded data of correspondings experiments,dimension nObs.nExp.times |
Q |
matrix of perturbation vectors Experiments*hidden nodes |
r_0 |
start states of hidden nodes |
rho |
prior over edge existance |
hyper.W |
list of rho, lambda, nu, tau = hyperparameters of prior over W |
prior.theta |
prior probabilities over attachements E-nodes to S-nodes |
depletion.factor |
diag of W |
depletion.factor.wt |
diag of W in WT |
method.wt |
method for WildType state calculation: steadyState or timeSeries |
stimulation.value |
constant value for stimulation function |
stimulation.value.wt |
constant value for stimulation function in WildType case |
seed |
random seed |
ts |
Timesteps |
itr |
number of iterations for MCMC |
returns sampled Ws and LogLiklihoods
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.