MCMC_sampling: learn W from data

Description Usage Arguments Value

View source: R/MCMC_sampling.R

Description

learn W from data

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
MCMC_sampling(
  dat,
  Q,
  r_0,
  rho,
  hyper.W,
  prior.theta,
  data.para,
  depletion.factor,
  depletion.factor.wt,
  method.wt,
  stimulation.value,
  stimulation.value.wt,
  seed = seed,
  ts,
  itr
)

Arguments

dat

feeded data of correspondings experiments,dimension nObs.nExp.times

Q

matrix of perturbation vectors Experiments*hidden nodes

r_0

start states of hidden nodes

rho

prior over edge existance

hyper.W

list of rho, lambda, nu, tau = hyperparameters of prior over W

prior.theta

prior probabilities over attachements E-nodes to S-nodes

depletion.factor

diag of W

depletion.factor.wt

diag of W in WT

method.wt

method for WildType state calculation: steadyState or timeSeries

stimulation.value

constant value for stimulation function

stimulation.value.wt

constant value for stimulation function in WildType case

seed

random seed

ts

Timesteps

itr

number of iterations for MCMC

Value

returns sampled Ws and LogLiklihoods


ZahraNSL/ODENEM documentation built on Dec. 31, 2020, 6:35 p.m.